44 research outputs found

    Two Species of Canine Babesia in Australia: Detection and Characterization by PCR

    Get PDF
    The haemoprotozoan Babesia canis has been recognized in Australia for many years, and a second, smaller species has recently been discovered. Amplification and sequencing of a partial region of the 18S small subunit ribosomal RNA (rRNA) gene enabled detection and characterization of the large and small canine babesiae of Australia for the first time. Isolates from northern Australia were genetically characterized to be 99% homologous to Babesia canis vogeli, confirming previous speculation about the subspecies of B. canis endemic to Australia. The partial 18S rRNA gene sequence amplified from isolates obtained in southeastern Australia was genetically identical to Babesia gibsoni, a species not previously known in Australia. The polymerase chain reaction (PCR) used was shown to be specific to Babesia and had a high sensitivity, detecting DNA at a parasitemia of approximately 0.0000027%. This study also reports the first known detection and characterization of B. canis DNA in Rhipicephalus sanguineus ticks using PCR

    Gross solids from combined sewers in dry weather and storms, elucidating production, storage and social factors

    Get PDF
    Variation in rates of sanitary hygiene products, toilet tissue and faeces occurring in sewers are presented for dry and wet weather from three steep upstream urban catchments with different economic, age and ethnic profiles. Results show, for example, that total daily solids per capita from the low income and ageing populations are almost twice that from high income or ethnic populations. Relative differences are verified through independent questionnaires. The relationship between solids stored in sewers prior to storms, antecedent dry weather period and the proportion of roof to total catchment area is quantified. A full solids' flush occurs when storm flows exceed three times the peak dry weather flow. The data presented will assist urban drainage designers in managing pollution caused by the discharge of sewage solids

    The amyloid precursor protein controls PIKfyve function

    Get PDF
    While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease

    Recent Developments in Helioseismic Analysis Methods and Solar Data Assimilation

    Get PDF
    MR and AS have received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 307117

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Babesia gibsoni infection in three dogs in Victoria

    No full text
    Small intraerythrocytic parasites were observed in the blood of three related male American Pit Bull Terriers. Two of the dogs, both less than 1-year-old, were anaemic at the time of initial examination and the third, an adult and sire of the two younger dogs, had a normal haemogram and low parasitaemia. The morphological appearance of the erythrocyte inclusions, analysis of a 450-bp region of the 18S rRNA gene and antibody titres provided evidence that this parasite was Babesia gibsoni, a species not previously reported in Australia

    Origin and mechanical significance of foliated cataclastic rocks in the cores of crustal-scale faults: Examples from the Median Tectonic Line, Japan

    Get PDF
    The Median Tectonic Line (MTL) is Japan's largest onshore fault and has been active since the mid-Cretaceous. Foliated cataclastic fault rocks are exceptionally well exposed in the fault core at Anko, Nagano Prefecture. Following an early phase of mylonitization and exhumation during left-lateral shearing, brittle fracture and cataclasis occurred leading to the development of centimeter- to submillimeter-spaced, fault zone parallel fracture systems. These fracture systems established an initial architectural hierarchy that influenced the subsequent development of foliated cataclasites and gouge. Initially, fracture systems coalesced to form interconnected zones of fine-grained ultracataclasite. Fluid influx at the onset of grain-scale brittle deformation led to precipitation of fibrous chlorite within the ultracataclasites, ultimately leading to the development of an interconnected network of foliated, phyllosilicate-rich cataclasites and gouges in the core of the MTL. The brittle reduction of grain size and ingress of a chemically active fluid phase simultaneously promoted reaction softening and diffusive mass transfer in the foliated ultracataclasites, leading to rate-dependent “frictional-viscous” flow at sub-Byerlee friction values. Associated weakening is indicated by the preferential localization of deformation within the ultracataclasites. A protracted sequence of carbonate mineralization and cementation events is also recognized during the fault rock evolution and suggests episodic periods of fluid overpressuring. A crustal-scale fault zone model is proposed, suggesting that the foliated cataclasites/gouges are weak in the long term and represent shallower crustal equivalents of phyllonitic fault rocks exposed in more deeply exhumed fault zones, including other parts of the MTL

    The nature and importance of phyllonite development in crustal-scale fault cores: an example from the Median Tectonic Line, Japan

    No full text
    Like many large, crustal-scale faults, the Median Tectonic Line (MTL) in SW Japan has a long history of movement, having been active predominantly as a strike-slip fault since the mid-Cretaceous. Fault rock exposures in the core of the MTL preserve a history of deformation at a range of mid- to shallow-crustal depths. Ryoke mylonites 1–4 km north of the main contact record deeper level, Cretaceous top-to-the-south sinistral movements. The remainder of the fault zone core is surprisingly narrow, exhibiting a wide variety of fault rocks that illustrate both the interaction and effects of syn-tectonic fluid influx over a range of deformation conditions. Exposures within 50 m of the central slip zone display a progressive sequence in fault rock evolution from ultramylonite→cataclasite→foliated cataclasite→phyllonite→breccia/gouge. This sequence occurs because cataclasis in the vicinity of the fault core creates permeable pathways for the ingress of chemically active fluids into the fault zone. This leads to the replacement of load-bearing phases, such as feldspar, by fine-grained, foliated aggregates of intrinsically weaker phyllosilicates such as white mica and chlorite. The grain size reduction associated with both cataclasis and mineral alteration creates conditions ideal for the operation of fluid-assisted, stress-induced diffusive mass transfer mechanisms. Comparison with the findings of recent experimental studies suggest that the fault zone processes observed in the core of the MTL will lead to long-term weakening, provided the network of phyllosilicate-rich fault rocks are able to form an interconnected thin layer of weak material on kilometre- to tens of kilometre-length scales
    corecore