106 research outputs found

    Foreword

    Get PDF

    New vibrational assignments for the nu1 to nu17 vibrational modes of aziridine and first analysis of the high resolution infrared spectrum of aziridine between 720 cm-1 and 1050 cm-1

    Get PDF
    International audienceFourier transform spectra of aziridine (C2H4NH) were recorded at high resolution (0.002 or 0.003 cm-1) in the 600-1750 and 1750-4000 cm-1 regions, using a Bruker IFS125HR spectrometer, located at the LISA facility in Creteil. In parallel, the harmonic force field of aziridine was evaluated analytically at the optimized geometry with second-order Møller-Plesset perturbation theory (MP2) together with the correlation-consistent polarized valence triple zeta basis sets cc-pVTZ. These ab initio predictions were used to perform consistent vibrational assignments for the nu1 to nu17 fundamental bands of aziridine observed in the infrared spectra recorded during this study. Finally, a first detailed rotational assignment was performed for two B-type bands located at 772.3571 cm-1 (nu10, CH2 rock) and 997.1592 cm-1 (nu8, NH bend) and for an A-type band located at 904.0429 cm-1 nu17 , ring deform). We noticed that the nu10 band is weakly perturbed, presumably because the v10 = 1 rotational levels are coupled with those of the v18 = 1 dark band located around 817 cm-1 through B-type and C-type Coriolis resonances

    Phosgene in the UTLS: seasonal and latitudinal variations from MIPAS observations

    Get PDF
    Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a Fourier transform spectrometer that measured mid-infrared atmospheric limb emission spectra from July 2002 to April 2012 on board the polar-orbiting satellite ENVISAT. We have used MIPAS data to study the latitudinal variations of phosgene (COCl2 or carbonyl chloride) and, for the first time, its seasonal variation in the upper troposphere/lower stratosphere region (UTLS). Retrievals of phosgene were made using the 830–860 cm−1 region, corresponding to the ν5 bands of COCl2. Unfortunately, in that region, the ν4 band of CFC-11, which is much stronger than COCl2 ν5, hides the phosgene emission. In order to evaluate seasonality and latitudinal distribution of phosgene we have analysed all the measurements made by MIPAS on days 18 and 20 of each month of 2008 with the optimized retrieval model (ORM) recently upgraded with the multi-target retrieval technique and with the optimal estimation functionality to apply external constraints to the state vector. Average seasonal profiles of phosgene show an evident latitudinal variability with the largest values observed in the tropical regions (maximum  ≈  35 parts per trillion by volume (pptv) at about 300 hPa). In the midlatitude and polar regions, the volume mixing ratio (VMR) values do not exceed 30 pptv and the vertical distributions are less peaked. Our analysis highlights that COCl2 seasonal variability is fairly low, apart from the polar regions

    On the feasibility of retrieving 16O 18O 16O ozone from high resolution ground-based FTIR spectra

    Full text link
    We present evidence of the 16O 18O 16O ozone isotope in the 5 micron region from FTIR solar occultation spectra obtained from the Jungfraujoch Solar Observatory (47°N, 8°E, 3580 m) in Switzerland at a spectral resolution of 0,0025 cm-1 (res. = 1/2L). These spectra clearly show numerous unblended lines of the 16O 18O 16O ozone isotope. Laboratory spectra in the 5 micron region of 16O 18O 16O have been measured and have yielded line positions of the nu1 + nu3 isotopic bands which can eventually lead to their retrieval from measured ground-based solar occultation spectra

    The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22

    Get PDF
    The observations acquired during the full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, aboard the European Space Agency Environmental Satellite (Envisat), have been analysed with version 8.22 of the Optimised Retrieval Model (ORM), originally developed as the scientific prototype of the ESA level-2 processor for MIPAS observations. The results of the analyses have been included into the MIPAS level-2 version 8 (level2-v8) database containing atmospheric fields of pressure, temperature, and volume mixing ratio (VMR) of MIPAS main targets H2_{2}O, O3_{3}, HNO3_{3}, CH4_{4}, N2_{2}O, and NO2_{2}, along with the minor gases CFC-11, ClONO2_{2}, N2_{2}O5_{5}, CFC-12, COF2_{2}, CCl4_{4}, CF4_{4}, HCFC-22, C2_{2}H2_{2}, CH3_{3}Cl, COCl2_{2}, C2_{2}H6_{6}, OCS, and HDO. The database covers all the measurements acquired by MIPAS in the nominal measurement mode of the full resolution (FR) part of the mission (from July 2002 to March 2004) and all the observation modes of the optimised resolution (OR) part (from January 2005 to April 2012). The number of species included in the MIPAS level2-v8 dataset makes it of particular importance for the studies of stratospheric chemistry. The database is considered by ESA the final release of the MIPAS level-2 products. The ORM algorithm is operated at the vertical grid coincident to the tangent altitudes of the observations or to a subset of them, spanning (in the nominal mode) the altitude range from 6 to 68 km in the FR phase and from 6 to 70 km in the OR period. In the latitude domain, FR profiles are spaced by about 4.7∘, while the OR profiles are spaced by about 3.7∘. For each retrieved species, the auxiliary data and the retrieval choices are described. Each product is characterised in terms of the retrieval error, spatial resolution, and “useful” vertical range in both phases of the MIPAS mission. These depend on the characteristics of the measurements (spectral and vertical resolution of the measurements), the retrieval choices (number of spectral points included in the analyses, number of altitudes included in the vertical retrieval grid), and the information content of the measurements for each trace species. For temperature, water vapour, ozone, and nitric acid, the number of degrees of freedom is significantly larger in the OR phase than in the FR one, mainly due to the finer vertical measurement grid. In the FR phase, some trace species are characterised by a smaller retrieval error with respect to the OR phase, mainly due to the larger number of spectral points used in the analyses, along with the reduced vertical resolution. The way of handling possible caveats (negative VMR, vertical grid representation) is discussed. The quality of the retrieved profiles is assessed through four criteria, two providing information on the successful convergence of the retrieval iterations, one on the capability of the retrieval to reproduce the measurements, and one on the presence of outliers. An easy way to identify and filter the problematic profiles with the information contained in the output files is provided. MIPAS level2-v8 data are available to the scientific community through the ESA portal (https://doi.org/10.5270/EN1-c8hgqx4)

    Level 2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT

    Get PDF
    High quality long-term data sets of altitude-resolved measurements of the atmospheric composition are important because they can be used both to study the evolution of the atmosphere and as a benchmark for future missions. For the final ESA reprocessing of MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) on ENVISAT (ENViromental SATellite) data, numerous improvements were implemented in the Level 2 (L2) processor Optimised Retrieval Model (ORM) version 8.22 (V8) and its auxiliary data. The implemented changes involve all aspects of the processing chain, from the modelling of the measurements with the handling of the horizontal inhomogeneities along the line of sight to the use of the optimal estimation technique to retrieve the minor species, from a more sensitive approach to detecting the spectra affected by clouds to a refined method for identifying low quality products. Improvements in the modelling of the measurements were also obtained with an update of the used spectroscopic data and of the databases providing the a priori knowledge of the atmosphere. The HITRAN_mipas_pf4.45 spectroscopic database was finalised with new spectroscopic data verified with MIPAS measurements themselves, while recently measured cross-sections were used for the heavy molecules. The Level 2 Initial Guess (IG2) data set, containing the climatology used by the MIPAS L2 processor to generate the initial guess and interfering species profiles when the retrieved profiles from previous scans are not available, was improved taking into account the diurnal variation of the profiles defined using climatologies from both measurements and models. Horizontal gradients were generated using the ECMWF ERA-Interim data closest in time and space to the MIPAS data. Further improvements in the L2 V8 products derived from the use of the L1b V8 products, which were upgraded to reduce the instrumental temporal drift and to handle the abrupt changes in the calibration gain. The improvements introduced into the ORM V8 L2 processor and its upgraded auxiliary data, together with the use of the L1b V8 products, lead to the generation of the MIPAS L2 V8 products, which are characterised by an increased accuracy, better temporal stability and a greater number of retrieved species

    Upper limits for undetected trace species in the stratosphere of Titan

    Full text link
    In this paper we describe a first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25{\deg}S and 75{\deg}N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.Comment: 11 pages plus 6 figure file
    corecore