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Abstract 

This paper presents the first high resolution (Δν = 0.00096 cm−1) IR investigation of 2-13C-propane. 

Spectra of the ν9(A1) CCC skeletal bending mode near 336.767 cm−1 (a b-type band) and the ν26(B2) methylene 

(CH2) rocking mode near 746.614 cm−1 (a c-type band) were recorded at the Canadian Light Source (CLS) 

synchrotron. The spectra were assigned both traditionally and with the aid of the PGOPHER program. As only 

limited microwave data are available for this molecule the present data was used to determine a new set of 

ground state constants that included centrifugal distortion terms. Upper state constants for both bands have 

been determined that provide a good simulation of the spectra. The analysis also included the strong a-type 

Coriolis resonance between the ν26 and 2ν9 states that causes strong perturbation-allowed transitions to appear 

in the spectrum. Lines of the 2ν9-ν9 hot band were also assigned and included in our analysis of the bending 

region. This data will be useful in identifying isotopic propane lines in Titan and other astrophysical objects. 

  



Introduction 

The Voyager discovery of propane on Titan [1] is an excellent illustration of the importance of high-

quality infra-red spectra for astronomy. The Titan observation prompted a FT-IR study [2] at the Kitt Peak 

National Observatory (KPNO), though as improved spacecraft and ground-based astronomical observations 

were made [3, 4] in the following years it became clear that laboratory data of better resolution as well as a 

more detailed analysis was required. This prompted several studies of propane [5-7], and  recent articles by 

Perrin et al. [8, 9] summarize the several high-resolution studies that have been done that support investigation 

of Titan and NASA missions (Voyager, Galileo & Cassini) to the outer Solar System. The infra-red work has also 

been used to study propane that has also been found on Jupiter and Saturn[10-13]. The IR bands have also been 

used for other satellite, aircraft and ground-based telescopic observations [3, 4]. Intensity, temperature and 

collision broadening studies have also been done recently to aid in the astrophysical studies [14-16]. The 

interstellar medium where new solar systems exist or are forming is also a place to expect to find propane since 

other organic molecules have been detected by these same observing methodologies [17].  

Propane is also important in terrestrial studies and is the second most abundant non methane 

hydrocarbon in the Earth’s atmosphere. C2 to C10 hydrocarbons from car exhausts have been identified as 

precursors to the formation of street-level ozone and urban smog. North American, European, and other 

regulators require round-the-clock monitoring of these compounds in major urban areas[18, 19], particularly 

during the summer months when sunlight is most intense. In addition, regulations developed in response to the 

Kyoto protocol on greenhouse gases require the monitoring of trace-level ultra-volatile compounds with global 

warming and ozone-depleting potential. In both terrestrial and extra-terrestrial studies measurement of isotopic 

ratios and isotopically labelled tracers give invaluable information on the past history and sources of these 

compounds. For example, with the rising use of propane as a more significant fuel source and the increasing 

development of fracking as a source of gases (which include propane) there have been many recent studies of 

C and H isotopic fractionation of hydrocarbons and CO2 during gas desorption from coal and shale[20]. The study 

of 13C ratios has even been suggested as a way of evaluating the age and quality of shale deposits in the 

geochemical literature [21, 22]. 

Determination of isotopic ratios from infrared spectroscopy requires line lists or models of isotopologues 

to be of as good quality as that of the main isotopologue, but this is where the available literature is very limited. 

There have been a series of low- to moderate-resolution studies establishing the vibrational assignment and 

force field for propane, starting with a series of papers by Henry L. McMurry and colleagues [23-26] and others 

[27] on the low-resolution IR spectra of various deuterated propanes. Later work includes further IR spectra and 

force field analyses by Gayles et al[28, 29] and Pearce and Levin[30]. A thorough series of Raman studies of 

many deuterated species of propane, also including a force field analysis, was performed by Murphy, Gough 

and co-workers [31-33]. There was also a band intensity study by Kondo and Saëki [34], of normal propane, 

CH3CD2CH3 and CD3CH2CD3 and a cross-section study of 1-13C-propane by Loh and Wolff [35] in the C-H 

stretching region. The only pure rotational work is microwave spectra by Lide in 1960 [36], who recorded six 

pure rotational microwave transitions for 1-13C-propane, 2-13C-propane and three singly substituted deuterium 

isotopologues. These yielded the three main rotational constants (A, B and C) but none of the centrifugal 

distortion constants.  

There were early attempts to calculate propane band intensities for some deuterated propanes with ab 

initio methods by Blom and Altona[37] and for the normal species of alkanes by Fischer et al [38]. More recently 

a high-quality set of ab initio calculations has been published predicting frequencies, inertial defects and 



centrifugal distortion constants for the singly substituted deuterium and 13C isotopic species of propane [39], 

but these will require experimental validation through high-resolution spectroscopy to be useful. 

We have thus begun a series of measurements with the aim of providing high-quality line lists for several 

D and 13C substituted isotopologues of propane with the eventual goals of having these analyses incorporated 

into the international spectral databases of GEISA[40] and HITRAN[41]. In this initial study the symmetrical 2-
13C-propane is chosen as this is likely to be the most straightforward to analyze, given the symmetry is the same 

as the main isotopologue (implying no hybrid bands) and there is only one possible isomer. 

The Titan work on the main isotopologue of propane has mainly concentrated[4] on the ν26 band of the 

at 748.5 cm−1, as this is spectroscopically the most tractable. However, even for this band the analysis is not 

entirely straightforward. The first high-resolution study using the KPNO data [2] indicated the band was 

perturbed for Ka' > 14 because of a resonance with an overtone of the ν9 skeletal bending. The spectra were not 

sufficiently resolved in this study (0.005 cm−1) near the band center to be definitively assigned, limiting the 

quality of the resulting model and its applicability to the improving astronomical data. Subsequent higher 

(0.00096 cm−1) resolution work[5] confirmed the presence of perturbation, which was found to be a strong a- 

type Coriolis interaction between ν26 and 2ν9. This analysis was significantly aided by simultaneous analysis of 

the 2ν9−ν9 hot band at 740.292 cm−1, as this allowed most levels of 2ν9 to be observed directly, rather than just 

those strongly mixed with ν26. The ν9 fundamental at 369.223 cm−1 was subsequently analyzed[6], and found to 

be unperturbed. For propane internal rotation is potentially important, given the presence of two low- 

frequency torsional modes at 217 cm−1 and 265  cm−1, first measured by inelastic neutron scattering[42]. This 

implies significant intensity for hot bands involving these modes, given that the 2ν9−ν9 hot band has been 

analyzed as mentioned above. Fortunately from the analysis point of view the ground state, ν9, 2ν9 and ν26 do 

not show any torsional splittings, though other states do, significantly complicating their analysis[8, 9]. 

For this initial study we therefore concentrate on the v26 and v9 regions for 2-13C-propane, making use 

the high-resolution (0.00096 cm−1) Fourier transform spectra available from the far IR beam line of the Canadian 

Light Source[43]. We present a simultaneous analysis using the PGOPHER program[44] of the ν9, ν26 and 2ν9−ν9 

bands, sufficient to reproduce all the assigned bands to an accuracy of better than 0.0002 cm−1. As part of this 

ground state constants are also determined by a combination difference fit, given the lack of available 

information on centrifugal distortion. A preliminary version of this analysis was reported at the 2017 

International Symposium on Molecular Spectroscopy (ISMS)[45]. 

Experimental 

Synthesis of 2-13C- Propane 
2-13C-propane was not commercially available, so a synthesis was performed by RH. As this is not a 

typical procedure we give the details here. 

All reactions were run in anhydrous solvents under dry argon. Commercial reagents were used as received. 2-13C-2-

Bromopropane (99 atom%) was prepared from 2-13C-2-propanol according to the procedure of Kozlowski et al [46]. An oven dried 250 

mL, three-neck flask equipped with a stir bar, reflux condenser, rubber septa, and a gas adaptor was charged with magnesium turnings 

(3.2 g, 135 mmol).  The flask was evacuated and backfilled with argon via an inlet adapter attached to the top of the reflux condenser.  

The flask was charged with anhydrous diethylene glycol dimethyl ether (100 mL) and the solvent was degassed by cooling to 0°C, 

pumping under high vacuum, and back filling with argon (3X).  A crystal of iodine and 2-13C-2-bromopropane (4.0 g, 32 mmol) were 

added to the flask, and the mixture was warmed under argon with a heating mantle to initiate a reaction.  When the iodine color was 

gone, the remaining 2-13C-2-bromopropane (10.0 g, 80 mmol) was added in portions so as to maintain a gentle reflux.  Upon complete 



addition of 2-13C-2-bromopropane the reaction mixture was allowed to cool to ambient temperature and stirred for approximately 1 

h.  The inlet adaptor was connected with Tygon tubing to a gas train consisting of a small vacuum trap, a Schwartz tube, and a mineral 

oil bubbler; the vacuum trap and Schwartz tube being evacuated and back filled with argon prior to attaching the bubbler.  The entire 

train was then open to the reaction flask with argon flowing through the condenser to the bubbler.  The vacuum trap was placed in a 

cooling bath at -30 °C (40% methanol-methanol/dry ice) and the Schwarz tube was placed in a cooling bath cooled to -89 °C (i-

PrOH/Liq.N2) taking care to maintain a positive flow of argon.  Deionized water (4.0 mL, excess) was slowly added, via syringe, to the 

reaction mixture over a period of 20 minutes at a rate that maintained a steady flow of gas as indicated by the mineral oil bubbler. 

Over this time, the reaction mixture becomes warm and 2-13C-propane was collected in the Schwarz tube.  After the addition of water 

was complete, propane-2-13C was isolated from the reaction apparatus and carefully vacuum distilled to a second Schwarz tube cooled 

in a bath at -89 °C (i-PrOH/Liq.N2).  The product was finally vacuum transferred to an evacuated lecture bottle for storage. The overall 

yield of 2-13C-propane was 2.79 g (55%).   

Purity was first checked by taking 1H spectra recorded with an Agilent spectrometer working at 400 MHz. [1H NMR (400 MHz, 

CDCl3): δ 1.30 (doublet of septets, 2H, JC,H = 124 Hz, JH,H = 7.2 Hz), 0.88 (dt, 6H, JC,H = 4.5 Hz, JH,H = 7.2 Hz); Chemical shifts (δ) are expressed in 

parts per million (ppm) from tetramethylsilane.]  The 2-13C-propane sample was analyzed using a Wilmad® quick pressure valve NMR 

tube.. Enrichment at C-2 was 99 atom% based on the starting material.  The product contained approximately 3.8% 2-13C-propene 

based on the 1H NMR data. 

CLS Far-IR Synchrotron Spectra 
All the spectra discussed in this paper were recorded with a Bruker 125HR FTS at the Canadian Light 

Source Synchrotron Far-IR beamline during Cycle 22 (Aug-Sep, 2015). The data analyzed here were all recorded 

at a resolution of 0.00096 cm−1. At that time the instrument was using a liquid Helium cooled Cu:Ge detector. 

The samples were contained in a 2 m White type cell set for an optical path length of 72 m. The White cell could 

be cooled by a recycling refrigerated liquid coolant system. 

The ν26 spectra were recorded at room temperature (296 ± 1K) with a pressure of 0.065 Torr in the White 

cell, using a KBr beam splitter and an entrance aperture of 1.15 mm.  The analyzed spectrum was computed by 

averaging 368 scans. The calibration of the spectra were checked using residual lines from the ν2 band of CO2 in 

the spectrometer against the HITRAN[41] database. This suggested a possible shift to lower frequency of our 

values of 0.0002 cm−1 was required, but as this is close to our measurement accuracy, and the accuracy of the 

HITRAN values no calibration shift was applied. 

The ν9 spectra were less straightforward as the band is very weak. The previous normal propane ν9 

spectra[6] used 3 Torr pressure in a cell with twice the path length, and intensity measurements by Kondo and 

Saëki[34] imply the ν9 band strength is 10-20 times weaker than ν26. We were thus limited by the amount of 

sample available to us; the White cell has a volume of approximately 300 litres so 1 gram of sample gives rise to 

only 1 Torr pressure in the cell. We ended up using all of the available sample, giving 3.040 Torr pressure at 

296 ± 1K, and recorded a spectrum at this temperature (191 scans) and a cooled spectrum at 217.25K (224 

scans). The cooling lowered the pressure to 2.225 Torr. A 6 μm Mylar beam splitter was used in this region along 

with an entrance aperture of 1.5 mm. Water lines in the room temperature spectra were used to check the 

calibration of the spectrum against values from HITRAN[41], and no adjustment was required. The low-

temperature spectrum froze out the otherwise rather strong absorptions from residual water in the cell making 

propane measurements easier. It also reduced the hot band intensity somewhat and made their identification 

clearer. The room temperature spectrum was used to extend the assignments to higher J and K values. The 

spectra are included in the supplementary data[47] deposited in the University of Bristol data repository. 

Results and Analysis 



A survey scan of the bands around ν26 is shown in Figure 1. It was not possible to completely eliminate 

2-13C-propene from the sample, and several bands from this species were visible in our spectra, specifically ν20 

(A"), ν19 (A") and ν18 (A"). The figure also includes a spectrum of moderate resolution of normal propane for 

comparison, demonstrating some obvious isotopic shifts caused by the 13C substitution. The band origins can 

offer valuable information for force field calculation refinements and so we include Table 1 a list of these for 

the bands observed in this study. Where high-resolution analyses have been done we use those values; for the 

other bands we have estimated band origins. Values for normal propane are included for reference. 

Table 1 Origins (/cm−1) of selected vibrational bands of propane 

Band Normal Propane 2-13C-Propanea Shift 

ν9 (A1) 369.222 808(25)b 366.766 695 1(74) -2.456 113 

ν26 (B2) 748.530 882(80)c 746.614 150 7(80) -1.916 731 

ν8 (A1) 870.39575(160)d 863 -7 

ν21 (B1) 921.3756(400)d 920.85 -0.53 

ν20 (B1) 1054.2e 1039.5 -14.7 

ν7 (A1) 1157e 1148 -9 

ν25 (B2) 1192e 1182 -10 
a This work 
b Ref [6] 
c Ref [5] 
d Ref [9] 
e From the PNNL database [48] as available from HITRAN [49]. 

 

Figure 1. Survey scan (upper trace) of our 2-13C-Propane sample at 0.065 Torr. The 2-13C-Propane bands 

are labelled according to the conventions used in previous work[5, 6, 8, 50]. The 2-13C-Propene impurity peaks 

are labelled in green. The lower trace is a low-resolution spectrum of normal propane for comparison, taken 

from PNNL[48] as available from the HITRAN database[49]. 

 

Initial Analysis of the ν26 Region 
An overview of the ν26 region is shown in Figure 2. An initial simulation for ν26 was set up using the ground 

state constants from Lide[36], and taking the vibrational changes in those constants from the normal propane 

study of ν26 [5]. The result is similar at first glance to the c-type band seen in normal propane. The analysis was 



started before the automated assignment tools[51] in PGOPHER were available, so a traditional approach to 

assignment was used based on picking out related branches. In this case the rRKa(J) and pPKa(J) branches (for a 

given Ka) can be tracked back to their matching rQKa and pQKa band heads, paying attention to the “missing” lines 

for each particular Ka subband value, as shown in Figure 3. The Q-branch heads were assigned readily by 

comparing them to the normal propane spectrum and by their approximate distances from the front of the 

central Q-branch head near 746.42 cm−1. The correctness of the pQKa and rQKa assignments could then be verified 

by the “missing lines” in a particular Ka series of J lines as they were tracked back to their subband origins near 

the front of each Q branch head. Tentative assignments of the rRKa(J) and pPKa(J) lines could then be made in 

PGOPHER, and then fitted to upper state rotational constants initially, and then centrifugal distortion constants 

and lower state constants as the fit progressed. This simple process could be continued for Ka' values up to 14, 

giving the preliminary fit presented at the 2017 ISMS[45], with some 3500 lines and an average residual of about 

2 x 10−4 cm−1. At this stage the residuals (Figure 4) were showing a systematic trend at higher Ka' values¸ and 

there was some evidence of “extra” lines appearing among the rR and pP lines out in the wings of the band. This 

implies the perturbation seen in the normal propane is also visible here, requiring information on ν9 and 2ν9, 

which is best obtained from the ν9 region. 

 

Figure 2. Overview of the region of the ν26(B2) c-type band in 2-13C-propane. The top trace is the 
experimental spectrum, and the lower trace is the PGOPHER simulation using the constants in Table 2 and Table 

3, with the ν26 lines in blue and the perturbation-allowed transitions in red. The left edge of the observed 
spectrum includes some CO2 lines that were used for calibration. 

 

Figure 3. Typical rQ band head and linked rR branch used in initial assignment. This is for Ka'' = 9, but a 

very similar pattern is seen for other Ka, but with the gap between the rQ band head and the first rR branch 

line increasing with Ka. Lines calculated with PGOPHER. 



 

Figure 4 Residuals from the initial fit[45] to the ν26 band of 2-13C-propane showing the effect of the 
perturbation caused by the a-type Coriolis interaction with 2v9 levels 

Analysis of the ν9 Region 
The ν9 band has the classic asymmetric rotor b-type band appearance with strong P and R branches and 

a central gap (Figure 5), just as in normal propane. The ν14 (A') CCC bending band of 2-13C-propene shows 

strongly at the high frequency side of this spectrum, but fortunately the very high-resolution of the CLS 

interferometer made it easy to differentiate the lines of the two species. A preliminary analysis of the ν14 band 

of 2-13C-propene was presented at the 2017 ISMS meeting [52], and a full analysis of this and the v14 band of 

normal propene is in progress. 

 An initial simulation was set up as for the ν26 band of 2-13C-propane, using the changes in rotational 

constants from normal propane[6]. The first useful feature for assignment was the clear rQ0(J) lines from 367.4 

– 368.5 cm−1 (Figure 6). This allowed the pQKa and rQKa band heads to be easily assigned, and then the fit extended 

to the entire band, walking up in J and K. For ν9 we used PGOPHER to plot out some Loomis-Wood diagrams to 

check some of the branches since this band was denser in line distribution. There were also many secondary 

band heads caused by lines in some Q branches turning back on themselves especially at the lower Ka values. 

The ν9 band proved to be unperturbed, as in normal propane, and the fit could be extended to the entire band, 

giving values for upper and lower state rotational constants and centrifugal distortion constants to 4th order. 

 

340 350 360 370 380 390 400

Wavenumber/cm−1



Figure 5 Overview of the region of the ν9 (A1) b-type band in 2-13C-propane. The top trace is the 
experimental spectrum, and the lower trace is the PGOPHER simulation using the constants in Table 2 and Table 
3.The colors in the simulation are black for ν9, red for 2ν9-ν9 and the green lines are for the ν14(A1) band of 2-

13C-propene. 

 

Figure 6 Close up of the ν9(A1) band center at 366.7667 cm−1 of 2-13C-propane. See Figure 5 caption for 
color information. Tick marks at the top indicate lines included in the fit. 

Close inspection of the spectrum revealed, as in normal propane, many weaker lines from hot bands. A 

clear pattern is seen of Q branch heads from the 2ν9−ν9 hot bands, particularly on the P-side (Figure 7). 

Comparison of the room temperature and cooled spectra confirmed the assignment to hot bands. The specific 

assignment to v9 = 1 as the lower state was confirmed via combination differences. A number of assignments 

were then possible from this spectrum, but as expected systematic errors became visible as the range of Ka' was 

increased. This confirmed the necessity for a combined fit to all the interacting states simultaneously. 

 

Figure 7 Expanded plot of the ν9(A1) band of 2-13C-propane showing the 2ν9-ν9 hot band Q branches 
(pQ9  and pQ8) in red. See also the Figure 6 caption. 

Combined fit to all states 
To model the interaction between ν26 and 2ν9 we added an a-type Coriolis resonance, as was done for 

the ν26 band of normal propane[5]. This was done using the general purpose perturbation mechanism built into 

PGOPHER[44]; the earlier analysis was done with a program written by JMF but the underlying calculation 

methods and matrix elements are essentially identical and the constants from [5] will simulate the normal 

propane spectrum in PGOPHER. The first order Coriolis mixing term, <v26=1|𝐽𝑎|v9=2>, clearly improved the fits 

for both ν26 and 2ν9 and a straight forward trial and error process accompanied by re-fitting could then be used 

to assign all the remaining lines from ν26 and 2ν9 in our spectra. The fitting process at this stage used was a 

simultaneous fit to all states, which predicted some perturbation-allowed 2ν9 ← 0 transitions. (It was clear from 

366 368 370 372 374 376
Wavenumber/cm−1

rQ0(J)

rQ1
rQ2

rQ3
rQ4

rQ5

357.0 357.4 357.8 358.2 358.6
Wavenumber/cm−1

pQ8

pQ9

ν9:
2ν9-ν9

pQ7

pQ8



the initial analysis that this overtone transition is otherwise too weak to see under the conditions we used.) The 

perturbation-allowed transitions are strong for many lines with Ka' between 18 and 26, with an additional 

smaller cluster with Ka' = 1 – 5. The large cluster at higher Ka' arises because the separation between ν26 and 2ν9 

is essentially J independent for Ka' > 10, and near degenerate for Ka' = 23 and 24, with the order swapping over, 

as shown in Figure 8(a). The cluster at lower Ka' arises because of the different pattern of levels for low Ka' for 

an asymmetric top, giving a few localized crossings, as shown in Figure 8(b). Both clusters gave lines strong 

enough to include in our fit, adding 543 lines in total, with 520 from the high Ka' cluster. This is to be compared 

with 8689 from ν26. See Figure 9 for a small sample section of the ν26 spectrum showing the strength and number 

of 2ν9 lines present. 

  

Figure 8 Reduced energy level plot for plot of selected energy levels of v26 and 2v9 showing (a) the large 
scale interaction around Ka = 23 and 24, giving perturbation-allowed transitions to all the 2ν9 levels in the 

diagram and (b) the localized crossings at low Ka affecting only a few levels. The symbols in (b) indicate levels 
involved in perturbation-allowed transitions included in the final fit. 

 

Figure 9 Section of the R-side of the ν26 band where the perturbation-allowed transitions are 
significant. Colors as in Figure 2; the tick marks at the top indicate lines included in the fit. 

In completing our line list we also found an additional small local perturbation in v26 around Ka' = 9. The 

shifts introduced by this state are typically small (< 0.004 cm−1) but are clear in our analysis. We can model this 

perturbation by introducing a state of B1 symmetry which we call P and adding a b-type Coriolis interaction 

between this and ν26. One perturbation-allowed transition is visible to this state, but most of the information 

on it comes from the displacement of the ν26 levels so we were only able to determine a relatively limited 
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amount about this state, and we cannot rule out alternative interpretations of this perturbation. This state must 

involve some combination of the v14 or v27 torsional levels but with sufficient torsional quanta involved that it is 

not possible to develop a more quantitative model at the present time. The parameters for this P state must be 

regarded as effective parameters, but they are sufficient to bring the residuals for the perturbed transitions into 

line with the rest of the fit, and the effect on intensities is small. Apart from the Coriolis mixing terms described 

here, the Hamiltonian is the standard Watson A reduced form[53] in the Ir representation. 

Our final list had 20185 assigned lines covering the ν9, ν26 and 2ν9-ν9 bands. To determine ground state 

constants we used this line list to generate 10625 ground state combination differences from 18309 of the 

observations; 1876 of the full set did not involve a combination difference and were not included in the fit. The 

final constants are listed in Table 2, including values from the microwave study by Lide[36] and the ab initio 

predictions[39], indicating good agreement with both. Details of the fit, including observed – calculated values 

for each line and the matrix elements used are available in the supplementary data[47]. Because of the high 

precision of the low order rotational constants from our fit, the ground state constants reproduce the 

microwave lines (which have J ≤ 7¸ Ka ≤ 1) to an average error of 33 kHz, easily within the estimated 66 kHz error 

of the measurements. These are not included in the final ground state fit, as they do not significantly change 

any of the constants. 

Table 2 Rotational constants (/cm−1) for the ground vibrational state of 2-13C-propane. 

 This work Microwaveb Ab initioc 

A 0.956 017 58(19) 0.956 011 4(33) 0.955 135 

B 0.281 755 72(11) 0.281 765 3(33) 0.281 893 

C 0.247 608 69(11) 0.247 611 0(33) 0.247 578 

K 5.373 61(39) x 10-6  5.580 x 10-6 

JK -9.025 4(29) x 10-7  -10.21 x 10-7 

J 2.377 27(81) x 10-7  2.475 x 10-7 

ᵟK 1.131(16) x 10-7  1.392 x 10-7 

ᵟJ 4.774 0(36) x 10-8  5.960 x 10-8 

K 1.151(18) x 10-10   

KJ -4.329(262) x 10-11   

JK 1.71(79) x 10-12   

J 2.69(23) x 10-13   

φK 3.3(22) x 10-11   

φJK 2.52(84) x 10-12   

φJ 1.15(12) x 10-13   

σ 0.000 12 3.3 x 10-6  

nobs 10 625a 6  
a  The ground state constants were determined by fitting to ground state combination differences 

computed from 18309 of the observations; 1876 of the full set did not involve a combination 

difference and were not used in the fit. 

b Reference [36]; only 6 Ka = 1 ← 0 lines were observed. 

C Reference [39]. 

The final constants for all the other states were derived from a simultaneous fit to the constants for all 

the other states, keeping the ground state constants fixed at the values from the combination difference fit. Our 



line list necessarily included a significant number of blends given the line density; these were handled with the 

standard approach of combining blended lines into a single effective observation, weighted by the calculated 

relative intensity of the lines. For the excited state fit this reduced 20185 to 14296 effective observations. The 

constants are given in Table 3, and the average error of this all band fit was 0.00016 cm−1, about 10% of the 

linewidth of 0.00096 cm−1, and showing no sign of systematic trends in the residuals – see Figure 10. Details of 

the fit, including observed – calculated values for each line and the matrix elements used are available in the 

supplementary data[47]. Also included is an alternative fit to the same line list, allowing the ground state 

constants to float also; this only causes minor changes to the constants, so the separate fits are recommended. 

The fit is reasonably similar to the values for normal propane; the main Coriolis matrix element is 0.0425 as 

compared to 0.0446 for normal propane[5] and only one additional Coriolis parameter was required here as 

compared to 3 for normal propane, but this difference is probably not significant. 

 The quality of the fit can be seen from Figure 10 and selected regions of the spectrum shown in Figure 

11; see also the other figures including spectra in the paper, all of which include simulated spectra using the 

final constants along with the experimental spectra. There are a significant number of weaker lines in the spectra 

that we do not assign, but this is to be expected as hot bands involving the torsional modes are to be expected. 

Indeed given that the hot band involving ν9 at 366 cm−1 figures so prominently in our analysis, it is perhaps 

surprising that the low frequency torsion levels at 217 cm−1 and 265  cm−1 [42] are not stronger, but they are 

visible as rather congested spectra under the assigned lines. 

 

Figure 10 Residuals for the combined fit to v26 (shown in Teal), 2v9 (blue) and v9 (black, mostly hidden 
under the other states). 
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Figure 11 Simulations of selected regions of the ν26 band. Colors as in Figure 2; the tick marks at the top 
indicate lines included in the fit. 



Table 3 Rotational constants for the v9, 2v9 and v26 vibrational states of 2-13C-propane. 

Constants / cm−1 v9 = 1 v9 = 2 v26 = 1 Pa 

ν  366.766 695 1(74)  735.331 880 2(99)  746.614 1507(80)  759.438 45(774) 

A  0.966 838 13(13)  0.977 747 76(18)  0.956 326 69(13)  0.939 883(92) 

B  0.281 560 898(57)  0.281 357 930(47)  0.280 916 552(37)  0.280 893 96(845) 

C  0.246 955 160(55)  0.246 303 861(43)  0.246 906 812(38)  0.244 903 93(832) 

K  6.088 74(46) x 10-6  6.878 25(61) x 10-6  5.404 177(486) x 10-6 c 

JK  -8.682 7(22) x 10-7  -8.329 8(19) x 10-7  -8.864 22(230) x 10-7 c 

J  2.329 149(370) x 10-7  2.268 10(16) x 10-7  2.363 633(273) x 10-7 3.435 7(187) x 10-7 

ᵟK  2.125(19) x 10-7  2.811 8(83) x 10-7  1.215 1(41) x 10-7 c 

ᵟJ  4.691 2(31) x 10-8  4.542 2(12) x 10-8  4.774 34(73) x 10-8 c 

K  2.099 7(218) x 10-10  2.772 7(66) x 10-10  1.174 5(197) x 10-10 c 

KJ  -5.405(305) x 10-11  -4.847(31) x 10-11  -4.768 2(2677) x 10-11 c 

JK  4.167(914) x 10-12 0  2.434 6(8028) x 10-12 c 

J  2.690(145) x 10-13 0  1.385(70) x 10-13 c 

φK  1.043(252) x 10-10 0  6.71(215) x 10-11 c 

φJK  5.24(92) x 10-12 0 0 c 

φJ  1.212(97) x 10-13 0 0 c 

LK 0 0  -2.459(240) x 10-15 0 

LKKJ 0 0  3.779(205) x 10-15 0 

LJK 0 0  -2.129(114) x 10-15 0 

LJJK 0 0  2.069(400) x 10-16 0 

<v26=1|𝐽𝑎|v9=2>  0.0424 901 9(80)  

<v26=1|𝐽𝑎𝐽
2|v9=2>  1.012 79(51) x 10-6  

<P|𝐽𝑏|v26=1>    6.20(15) x 10-4 

<P|𝐽𝑏𝐽
2|v26=1>    9.734(78) x 10-7 

σ 0.000 16 

n 14 296b 

a. The identity of this state is unknown, but must involve one or both torsional modes 

b. There were 20185 observations before combining blends  

c. Constrained to the ground state values in Table 2



 

Conclusions 

The fitting of the ground, ν9, 2ν9 and ν26 vibrational states of 2-13C-propane has yielded molecular 

constants taking into account perturbations of sufficient quality to reproduce the observed ν9, 2ν9-ν9 and ν26 

bands to 0.00016 cm−1. This will provide the position part of a linelist but, while the model presented here gives 

good relative intensities, absolute intensities will require a good model for the torsional vibrations to allow a 

complete partition function calculation. This has been discussed by Perrin et al [9] for normal propane. 

The bands we have analyzed here are not affected by the torsional motions; the torsional splittings are 

probably comparable to the ground state torsional splittings of only a few MHz[54], so would require much 

higher resolution to be visible. However the ν8 and ν21 bands in normal propane show strong interactions with 

torsional motions and the analysis of these bands in normal propane required a model including states with two 

quanta in the torsional modes [9], and these bands are also visible in our spectra, and an analysis of these bands 

is likely to be the most informative about the torsion modes. 

The methodology used here can be extended in a straightforward way to other isotopologues; 

preliminary results for 2,2-D2-[55, 56], 1-13C-[57], 2-D1- [58] and 1-D1- [59] substituted propanes have been 

presented, and we also have preliminary analyses for the CCC bending modes of the 1,1,1-D3-, 1,1,1,3,3,3-D6- 

and D8- propane species [ν16(A’), ν9(A1) and v9(A1), respectively]. There are no experimentally determined values 

of rotational constants reported for these molecules in the literature. Analyses of these species are sped up 

significantly by using the nearest lines functionality recently added to PGOPHER, which allows rapid expansion of 

an initial assignment to cover an entire band, and these results will be described in follow up publications. 
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