352 research outputs found

    Recurrent Hypoglycaemia in a Patient with Metastatic Pancreatic Carcinoma

    Get PDF
    The patient's recurrent hypoglycaemia was found to be due to non-islet cell tumour hypoglycaemia

    European bone mineral density loci are also associated with BMD in East-Asian populations

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldMost genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10(-9)), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10(-5)), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10(-5)), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10(-5)), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians

    Optimisation of Biochemical Condition and Substrates In Vitro for Tissue Engineering of Ligament

    Get PDF
    In this work, we analysed the effect of growth factors on in vitro cell proliferation and collagens synthesis by fibroblasts cultured for 72 h on different substrates (silicon sheet with or without 1% gelatin, and glass as control surface) for ligament tissue engineering. A human fibroblast cell line (CRL-2703) was used. The synthesis of type I and type III collagens were evaluated qualitatively and quantitatively by RT-PCR and confocal microscopy, respectively. Cell proliferation was evaluated by two methods: (1) MTT assay (2) cell cycle analysis. It was found that PDGF-AB stimulate the proliferation of fibroblast cultured on gelatin coated silicon sheet in dose dependant manner with a maximum effect at 10 ng ml(−1). The exogenous TGF-ÎČ1 induced the expression of type I and type III collagens in a dose and substrate-dependant manner. We deduce from this work that biochemical conditions and substrates have an important impact for optimisation of the tissue neo synthesis

    Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish

    Get PDF
    Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets - adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described - all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC

    TTF-1 Action on the Transcriptional Regulation of Cyclooxygenase-2 Gene in the Rat Brain

    Get PDF
    We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain

    Clostridia in Premature Neonates' Gut: Incidence, Antibiotic Susceptibility, and Perinatal Determinants Influencing Colonization

    Get PDF
    Although premature neonates (PN) gut microbiota has been studied, data about gut clostridial colonization in PN are scarce. Few studies have reported clostridia colonization in PN whereas Bacteroides and bifidobacteria have been seldom isolated. Such aberrant gut microbiota has been suggested to be a risk factor for the development of intestinal infections. Besides, PN are often treated by broad spectrum antibiotics, but little is known about how antibiotics can influence clostridial colonization based on their susceptibility patterns. The aim of this study was to report the distribution of Clostridium species isolated in feces from PN and to determine their antimicrobial susceptibility patterns. Additionally, clostridial colonization perinatal determinants were analyzed.Of the 76 PN followed until hospital discharge in three French neonatal intensive care units (NICUs), 79% were colonized by clostridia. Clostridium sp. colonization, with a high diversity of species, increased throughout the hospitalization. Antibiotic courses had no effect on the clostridial colonization incidence although strains were found susceptible (except C. difficile) to anti-anaerobe molecules tested. However, levels of colonization were decreased by either antenatal or neonatal (during more than 10 days) antibiotic courses (p = 0.006 and p = 0.001, respectively). Besides, incidence of colonization was depending on the NICU (p = 0.048).This study shows that clostridia are part of the PN gut microbiota. It provides for the first time information on the status of clostridia antimicrobial susceptibility in PN showing that strains were susceptible to most antibiotic molecules. Thus, the high prevalence of this genus is not linked to a high degree of resistance to antimicrobial agents or to the use of antibiotics in NICUs. The main perinatal determinant influencing PN clostridia colonization appears to be the NICU environment

    Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies

    Get PDF
    BACKGROUND: Genetic determinants of stroke, the leading neurological cause of death and disability, are poorly understood and have seldom been explored in the general population. Our aim was to identify additional loci for stroke by doing a meta-analysis of genome-wide association studies. METHODS: For the discovery sample, we did a genome-wide analysis of common genetic variants associated with incident stroke risk in 18 population-based cohorts comprising 84 961 participants, of whom 4348 had stroke. Stroke diagnosis was ascertained and validated by the study investigators. Mean age at stroke ranged from 45·8 years to 76·4 years, and data collection in the studies took place between 1948 and 2013. We did validation analyses for variants yielding a significant association (at p<5 × 10(-6)) with all-stroke, ischaemic stroke, cardioembolic ischaemic stroke, or non-cardioembolic ischaemic stroke in the largest available cross-sectional studies (70 804 participants, of whom 19 816 had stroke). Summary-level results of discovery and follow-up stages were combined using inverse-variance weighted fixed-effects meta-analysis, and in-silico lookups were done in stroke subtypes. For genome-wide significant findings (at p<5 × 10(-8)), we explored associations with additional cerebrovascular phenotypes and did functional experiments using conditional (inducible) deletion of the probable causal gene in mice. We also studied the expression of orthologs of this probable causal gene and its effects on cerebral vasculature in zebrafish mutants. FINDINGS: We replicated seven of eight known loci associated with risk for ischaemic stroke, and identified a novel locus at chromosome 6p25 (rs12204590, near FOXF2) associated with risk of all-stroke (odds ratio [OR] 1·08, 95% CI 1·05-1·12, p=1·48 × 10(-8); minor allele frequency 21%). The rs12204590 stroke risk allele was also associated with increased MRI-defined burden of white matter hyperintensity-a marker of cerebral small vessel disease-in stroke-free adults (n=21 079; p=0·0025). Consistently, young patients (aged 2-32 years) with segmental deletions of FOXF2 showed an extensive burden of white matter hyperintensity. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and microhaemorrhage. The orthologs of FOXF2 in zebrafish (foxf2b and foxf2a) are expressed in brain pericytes and mutant foxf2b(-/-) cerebral vessels show decreased smooth muscle cell and pericyte coverage. INTERPRETATION: We identified common variants near FOXF2 that are associated with increased stroke susceptibility. Epidemiological and experimental data suggest that FOXF2 mediates this association, potentially via differentiation defects of cerebral vascular mural cells. Further expression studies in appropriate human tissues, and further functional experiments with long follow-up periods are needed to fully understand the underlying mechanisms

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    Get PDF
    Correction: Volume: 10 Issue: 1 Article Number: 44 DOI: 10.1186/s13601-020-00351-w Published: OCT 26 2020Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.Peer reviewe

    Highlights From the Annual Meeting of the American Epilepsy Society 2022

    Get PDF
    With more than 6000 attendees between in-person and virtual offerings, the American Epilepsy Society Meeting 2022 in Nashville, felt as busy as in prepandemic times. An ever-growing number of physicians, scientists, and allied health professionals gathered to learn a variety of topics about epilepsy. The program was carefully tailored to meet the needs of professionals with different interests and career stages. This article summarizes the different symposia presented at the meeting. Basic science lectures addressed the primary elements of seizure generation and pathophysiology of epilepsy in different disease states. Scientists congregated to learn about anti-seizure medications, mechanisms of action, and new tools to treat epilepsy including surgery and neurostimulation. Some symposia were also dedicated to discuss epilepsy comorbidities and practical issues regarding epilepsy care. An increasing number of patient advocates discussing their stories were intertwined within scientific activities. Many smaller group sessions targeted more specific topics to encourage member participation, including Special Interest Groups, Investigator, and Skills Workshops. Special lectures included the renown Hoyer and Lombroso, an ILAE/IBE joint session, a spotlight on the impact of Dobbs v. Jackson on reproductive health in epilepsy, and a joint session with the NAEC on coding and reimbursement policies. The hot topics symposium was focused on traumatic brain injury and post-traumatic epilepsy. A balanced collaboration with the industry allowed presentations of the latest pharmaceutical and engineering advances in satellite symposia
    • 

    corecore