179 research outputs found

    Inversion Structures: some puzzles of reconstruction

    Get PDF
    Inversion structures present a singular problem: arguments and sentential operators of the inverted phrase seem to c-command “out of” the phrase into the sentence remnant. This phenomenon is often referred to as “connectedness”. This paper points out that the class of inversion structures that exhibit connectedness is larger than just “inverse” copular sentences and pseudoclefts; it includes experiencer predicates with “extraposed” clausal theme arguments and also SOV language sentences with post-verbal elements. It then examines some of the solutions proposed for connectedness, in particular a solution in terms of an ι-reduction rule proposed by Heycock & Kroch (1999). It notes a hitherto-unnoticed problem with the last mentioned solution, namely that the rule works only when the variable of the pseudocleft is at the lower end of the clefted phrase. The paper then suggests that the interpretive mechanism of LF is in fact extremely simple: it appends (by adjunction) the sentence remnant at the bottom of the inverted phrase. This solution yields the correct results for all the inversion data

    Case and 0-Marking in Malayalam: Implications for the Projection Principle

    Get PDF
    Proceedings of the Ninth Annual Meeting of the Berkeley Linguistics Society (1983), pp. 104-11

    Control in Some Sentential Adjuncts of Malayalam

    Get PDF
    Proceedings of the Tenth Annual Meeting of the Berkeley Linguistics Society (1984), pp. 623-63

    Performance of waste insulating mineral oil-based biodiesel in a direct-injection CI engine

    Get PDF
    Mineral oil has been used as an insulating fluid in the power industry. However, surplus waste oil poses serious environmental threats because of disposal concerns. Waste to biofuel is an excellent way to deal with waste material from various sources. In this study, the trans-esterification method was utilised to convert the waste-insulating mineral oil into a quality bio-fuel. Waste-insulating transformer oil was converted to biodiesel, and it was tested according to ASTM standards. Four different blends of waste-insulating biodiesel with diesel in 25 per cent (WIOBD25), 50 per cent (WIOBD50), 75 per cent (WIOBD75), and 100 per cent fractions (WIOBD100), were used for performance testing in a direct injection compression ignition (DICI) engine. The combustion parameters such as BSFC, EGT, and BTE were evaluated with varying crank angles and constant engine speed. The waste-insulating biodiesel performance results are then compared with diesel fuel. BSFC increased as the biofuel mixture in diesel was raised, and the brake thermal efficiency (BTE) was significantly reduced compared to diesel for all WIOBD diesel mixtures. Due to the combustion process, a high pressure and heat release rate (HRR) were noticed inside the cylinder with the waste-insulating oil-derived biodiesel samples. WIOBD biodiesel blends produced lower levels of hydrocarbon, carbon monoxide, and smoke emissions than diesel fuel, but greater levels of nitrogen oxides (NOx) were produced than diesel fuel. In addition to lower emissions combined with improved engine performance, the WIOBD25 fuel blend has been found to be experimentally optimal for practical application. As a result, the test findings indicated that WIOBD biodiesel might be used as a substitute for conventional diesel fuel

    Biodiesel and green diesel generation: An overview

    Get PDF
    First, second, third, and fourth-generation biofuels are continuously evolving as a promising substitute to petrodiesel catalyzed by energy depletion, economic and environmental considerations. Bio-diesel can be synthesized from various biomass sources, which are commonly divided into FAME and renewable biodiesel. FAME biodiesel is generally produced by the transesterification of vegetable oils and fats while renewable diesel is produced by hydro-deoxygenation of vegetable and waste oils and fats. The different generation, processing technologies and standards for FAME and renewable biodiesel are reviewed. Finally, the life cycle analysis and production cost of conventional and renewable biodiesel are described

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Translating genetic and functional data into clinical practice: a series of 223 families with myotonia.

    Get PDF
    High throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita (MC) as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of MC. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardised functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine if functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterisation of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern and serve as reference for 34 previously unreported and 28 previously uncharacterised CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of MC. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterisation can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore