34 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Student self-efficacy in modular accounting: A tool to improve the academic performance of accounting students enrolled in the modular program of De La Salle University

    No full text
    Self-efficacy has been a concept which has been greatly explored and related to different fields, especially performance. However, various studies showed inconsistencies in the findings and mostly focused on academic performance, not taking into account other various control variables. This research aimed to provide information regarding the effects of self-efficacy in the academic performance of students in an academic setting while controlling for demographic and environmental factors. Particularly, it focused on the De La Salle University’s Modular Program for Accountancy students. Employing a sample of 530 accounting students in De La Salle University, the results of the study found out that general self-efficacy has a significant impact on the academic performance of accounting students enrolled in the modular program. The study also found out that there are other significant variables that affected the academic performance of the students. © BEIESP

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Patterns of oral anticoagulant use and outcomes in Asian patients with atrial fibrillation: a post-hoc analysis from the GLORIA-AF Registry

    Get PDF
    Background: Previous studies suggested potential ethnic differences in the management and outcomes of atrial fibrillation (AF). We aim to analyse oral anticoagulant (OAC) prescription, discontinuation, and risk of adverse outcomes in Asian patients with AF, using data from a global prospective cohort study. Methods: From the GLORIA-AF Registry Phase II-III (November 2011-December 2014 for Phase II, and January 2014-December 2016 for Phase III), we analysed patients according to their self-reported ethnicity (Asian vs. non-Asian), as well as according to Asian subgroups (Chinese, Japanese, Korean and other Asian). Logistic regression was used to analyse OAC prescription, while the risk of OAC discontinuation and adverse outcomes were analysed through Cox-regression model. Our primary outcome was the composite of all-cause death and major adverse cardiovascular events (MACE). The original studies were registered with ClinicalTrials.gov, NCT01468701, NCT01671007, and NCT01937377. Findings: 34,421 patients were included (70.0 ± 10.5 years, 45.1% females, 6900 (20.0%) Asian: 3829 (55.5%) Chinese, 814 (11.8%) Japanese, 1964 (28.5%) Korean and 293 (4.2%) other Asian). Most of the Asian patients were recruited in Asia (n = 6701, 97.1%), while non-Asian patients were mainly recruited in Europe (n = 15,449, 56.1%) and North America (n = 8378, 30.4%). Compared to non-Asian individuals, prescription of OAC and non-vitamin K antagonist oral anticoagulant (NOAC) was lower in Asian patients (Odds Ratio [OR] and 95% Confidence Intervals (CI): 0.23 [0.22-0.25] and 0.66 [0.61-0.71], respectively), but higher in the Japanese subgroup. Asian ethnicity was also associated with higher risk of OAC discontinuation (Hazard Ratio [HR] and [95% CI]: 1.79 [1.67-1.92]), and lower risk of the primary composite outcome (HR [95% CI]: 0.86 [0.76-0.96]). Among the exploratory secondary outcomes, Asian ethnicity was associated with higher risks of thromboembolism and intracranial haemorrhage, and lower risk of major bleeding. Interpretation: Our results showed that Asian patients with AF showed suboptimal thromboembolic risk management and a specific risk profile of adverse outcomes; these differences may also reflect differences in country-specific factors. Ensuring integrated and appropriate treatment of these patients is crucial to improve their prognosis. Funding: The GLORIA-AF Registry was funded by Boehringer Ingelheim GmbH

    Correction to: Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    No full text
    International audienceIn this article, the name of the GLORIA-AF investigator Anastasios Kollias was given incorrectly as Athanasios Kollias in the Acknowledgements. The original article has been corrected

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore