29 research outputs found

    Online Education and Internet Connectivity Problems: A Perspective of the Teachers and Undergraduate Dental Students

    Get PDF
    OBJECTIVES Assessment of difficulties and glitches regarding internet connectivity faced by undergraduates and teachers during online learning.  METHODOLOGY This study was conducted using an online questionnaire. 186 undergraduate students and teachers were included from CMH, Lahore. The duration of this study was 3 months. . RESULTS There was found to be no statistical difference in reluctance to use online platforms (p=0.17), frequent loss of internet (p=0.181), difficulty in dealing with the loss of connection (p=0.181), disturbance in planned schedule due to loss of connection (p=0.213), lagging behind in schedule (p=0.630), inability to convey the message (p=0.093), lack of internet in remote areas (p=0.302), lack of training to deal with connection problems (p=0.766), poor connection due to technical problems in devices (p=0.089) and poor quality internet (p=0.740) among faculty and students. CONCLUSION The problems due to internet connectivity issues in online education were faced more by students as compared to faculty

    GIS-based assessment of selective heavy metals and stable carbon isotopes in groundwater of Islamabad and Rawalpindi, Pakistan

    Get PDF
    This study applied a nuclear technique in conjunction with a classical monitoring tool to characterize the origin, fate, and behavior of metal pollutants in groundwater of Islamabad-Rawalpindi Metropolitans, which are also known as the “twin cities.” In total, 122 groundwater samples were collected and analyzed in accordance with standard methods. GIS and multivariate statistical analysis were employed for the groundwater vulnerability assessment and source apportionment. The results of the aesthetic parameters indicated that the majority of groundwater sources were tested and were colorless, odorless and tasteless in the “twin cities.” In addition, the findings of this study indicated that the concentration of pH, phosphates, copper, manganese, and zinc were within the drinking water standards in the “twin cities” as stipulated by the World Health Organization (WHO) and Pakistan Standard and Quality Control Authority (PSQCA) at all sampling points in the study area. The groundwater quality was found unsuitable for consumption due to elevated levels of electrical conductivity and total dissolved solids at 9.83% and 4.09% of samples, respectively. The contents of arsenic and fluoride were well within the allowable range at almost all points except at one location. However, iron and lead contents were above permissible limits. A statistical analysis revealed that trace metals originated from both geogenic and anthropogenic sources such as enhanced rock-water interaction, over abstraction, evaporation enrichment, improper waste disposal, discarded batteries, cross contamination of water supply and sewerage lines, active recharge from Lie drain, and domestic, industrial, and agricultural effluents. The computed water quality index (WQI) based on heavy metals elucidated that groundwater quality was poor in most of the study area due to elevated electrical conductivity, total dissolved solids, lead, iron, arsenic, and fluoride values. A highly depleted isotopic composition of 13C provides clues about the aquifer’s vulnerability from miscellaneous sources such as domestic, urban, construction, and agricultural sites and the dissolution of carbonate minerals. This study clearly indicates that a rapidly growing population, unplanned urbanization, industrialization, improper waste disposal, over abstraction, and a lack of water abstraction policies are significantly contributing toward the impairment of groundwater quality in the study area. The study strongly emphasized the need to regulate groundwater abstraction by improving water treatment and the supply system for the provision of safe water to the urban populace. These results will help in designing remedial strategies for improving water quality in the “twin cities.

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    A Bibliometric Review of characterization of outdoor solar PV panel for shading and validation by PV emulator

    Get PDF
    Many researchers and experts have begun to work in Renewable Energy (RE) Research and Development (R&D) as an interdisciplinary area ineluctable solution to lower the use of conventional power generation or non-renewable resources. Solar photovoltaic energy has gained a lot of recognition as one of the best green alternatives. However, its firm reliance on environmental and climatic conditions makes it difficult for researchers to conduct experiments at the operational temperature (T) and Solar insolation level (G). These solar PV panels with a controllable light source are inefficient, unreliable, and unsuitable for testing PV algorithms such as Maximum Power Point Tracking (MPPT), microgrids, and energy storage mechanisms. PV array emulators have been developed to address these issues and effectively replace actual solar PV modules in laboratory tests by generating identical PV characteristics and simulating the electrical behavior of PV sources such as maximum power point monitoring (MPPT). Simulating PV arrays under partial shading conditions and PV modules under various climatic conditions has become a significant study area, primarily to validate PV emulator

    Utilization of corncob xylan as a sole carbon source for the biosynthesis of endo-1,4-β xylanase from Aspergillus niger KIBGE-IB36

    No full text
    Abstract Background Xylan is a hemicellulose polysaccharide which is composed of β-1,4-linked d-xylosyl residues. Endo-1,4-β xylanase has the ability to cleave xylan back bone chains to release xylose residues. They are produced by a number of prokaryotic and eukaryotic organisms. Among them, filamentous fungi are attracting great attention due to high secretion of xylanolytic enzymes. Endo-1,4-β xylanase has wide industrial applications such as in animal feed, bread making, food and beverages, textile, bleaching of wood pulp, and biofuel production. Results In this study, different Aspergillus species were screened for the production of endo-1,4-β xylanase, and Aspergillus niger KIBGE-IB36 was selected for optimum production of enzyme in submerged fermentation technique. Influence of various fermentation conditions was investigated to produce high titer of endo-1,4-β xylanase. The results indicated that A. niger KIBGE-IB36 showed optimum production of endo-1,4-β xylanase at 30 °C, pH 8 after 6 days of incubation. Different macro- and micronutrients were also amalgamated in the fermentation medium to increase the enzyme production. The parametric optimization of endo-1,4-β xylanase resulted in tenfold increase after hydrolysis of 20 g L−1 corncob xylan. Conclusions The use of low-cost substrate approach for high production of endo-1,4-β xylanase has been developed successfully that can be consumed in different industrial applications especially in paper and pulp industry. Graphical abstract Production of Xylanase from Aspergillus niger KIBGE-IB36

    Reversible Projection Technique for Colon Unfolding

    No full text

    Design-of-Experiments (DoE)-Assisted Fabrication of Quercetin-Loaded Nanoemulgel and Its Evaluation against Human Skin Cancer Cell Lines

    No full text
    Background: Quercetin (QCT) is a natural polyphenolic flavonoid showing great potential in the treatment of skin cancer. However, its use is limited owing to its poor water solubility, poor absorption, quick metabolism and excretion, as well as low stability. Preparation of nanoemulgel has been proven to be an effective approach to deliver the drugs topically due to various advantages associated with it. Objectives: This study aimed to prepare stable nanoemulgel of QCT using a Design-of-Experiments (DoE) tool for optimization, to characterize and to assess its in vivo toxicity and efficacy against human cancer cell lines in vitro. Methods: An ultrasonication emulsification method was used for the preparation of QCT-loaded nanoemulsion (QCT@NE). Box&ndash;Behnken design was used for the optimization of developed nanoemulgel. Then, in vitro characterization of prepared nanoemulsion was performed using Fourier Transform-Infra Red (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), particle size analysis, determination of zeta potential and entrapment efficiency (%EE). Further, the developed QCT-loaded nanoemulgel (QCT@NG) was characterized in vitro using texture profile analysis, viscosity and pH determination. Eventually, the cell cytotoxicity studies of the prepared nanoemulgel were performed on the skin cancer cell lines A431 followed by an acute toxicity and skin irritation study on male wistar rats in vivo. Results: The developed QCT@NE was found to be nanometric in size (173.1 &plusmn; 1.2 nm) with low polydispersity index (0.353 &plusmn; 0.13), zeta potential (&minus;36.1 &plusmn; 5.9 mV), and showed good %EE (90.26%). The QCT@NG was found to be substantially more effective against the human skin carcinoma (A431) cell lines as compared to plain QCT with IC50 values of 108.5 and 579.0 &micro;M, respectively. Skin irritation study showed no sign of toxicity and ensured safety for topical application. Hematological analysis revealed no significant differences between the treatment and control group in any biochemical parameter. In the nanoemulgel treatment group, there were no discernible differences in the liver enzymes, bilirubin, hemoglobin, total leukocyte and platelet counts as compared to the control group. Conclusions: The optimized QCT@NG was found to be an ideal and promising formulation for the treatment of skin cancer without showing skin irritation and organ toxicity
    corecore