6 research outputs found

    Materialism and life satisfaction relations between and within people over time: results of a three-wave longitudinal study

    Get PDF
    The negative association between materialism and life satisfaction is well-documented, but it is unclear what the directionality of the association is. To address this issue, we (a) conducted a three-wave longitudinal study (N = 6551) over 3 years and examined the bidirectional relations between life satisfaction and materialism as a composite measure and with each of its three facets (happiness, success, and centrality), and (b) estimated Random Intercept Cross-Lagged Panel Models (RI-CLPMs) that separate inter- and intra-individual effects and compared them with traditional CLPMs that do not. The traditional CLPM showed bidirectional negative associations between composite materialism and life satisfaction and strong negative bidirectional association for the happiness facet, but positive effects of the centrality facet on life satisfaction. However, and importantly, the RI-CLPM revealed that these relations exist predominantly between people. Within people, materialism does not impact life satisfaction, but life satisfaction does impact the happiness facet negatively. These findings challenge common ideas that the direction of the effect is from materialism to life satisfaction and that it is unilaterally negative.info:eu-repo/semantics/publishedVersio

    Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients

    Get PDF
    Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1

    Rad21-Cohesin Haploinsufficiency Impedes DNA Repair and Enhances Gastrointestinal Radiosensitivity in Mice

    Get PDF
    Approximately half of cancer-affected patients receive radiotherapy (RT). The doses delivered have been determined upon empirical experience based upon average radiation responses. Ideally higher curative radiation doses might be employed in patients with genuinely normal radiation responses and importantly radiation hypersensitive patients would be spared the consequences of excessive tissue damage if they were indentified before treatment. Rad21 is an integral subunit of the cohesin complex, which regulates chromosome segregation and DNA damage responses in eukaryotes. We show here, by targeted inactivation of this key cohesin component in mice, that Rad21 is a DNA-damage response gene that markedly affects animal and cell survival. Biallelic deletion of Rad21 results in early embryonic death. Rad21 heterozygous mutant cells are defective in homologous recombination (HR)-mediated gene targeting and sister chromatid exchanges. Rad21+/− animals exhibited sensitivity considerably greater than control littermates when challenged with whole body irradiation (WBI). Importantly, Rad21+/− animals are significantly more sensitive to WBI than Atm heterozygous mutant mice. Since supralethal WBI of mammals most typically leads to death via damage to the gastrointestinal tract (GIT) or the haematopoietic system, we determined the functional status of these organs in the irradiated animals. We found evidence for GIT hypersensitivity of the Rad21 mutants and impaired bone marrow stem cell clonogenic regeneration. These data indicate that Rad21 gene dosage is critical for the ionising radiation (IR) response. Rad21 mutant mice thus represent a new mammalian model for understanding the molecular basis of irradiation effects on normal tissues and have important implications in the understanding of acute radiation toxicity in normal tissues

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders

    Get PDF
    Importance Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. Objective To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Design, Setting, and Participants Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. Main Outcomes and Measures Interregional profiles of group difference in cortical thickness between cases and controls. Results A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. Conclusions and Relevance In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders
    corecore