407 research outputs found

    CIRCULAR DICHROISM OF LIGHT-HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA

    Get PDF
    The CD spectra of a range of antenna complexes from several different species of purple photosynthetic bacteria were recorded in the wavelength range of 190 to 930 nm. Analysis of the far UV CD (190 to 250 nm) showed that in each case except for the B800-850 from Chr. vinosum the secondary structure of the light-harvesting complexes contains a large amount of α-helix (50%) and very little 0-pleated sheet. This confirms the predictions of the group of Zuber of a high a-helical content based upon consideration of the primary structures of several antenna apoproteins. The CD spectra from the carotenoids and the bacteriochlorophylls show considerable variations depending upon the type of antenna complex. The different amplitude ratios in the CD spectrum for the bacteriochlorophyll Qy, Qx and Soret bands indicate not only different degrees of exciton coupling, but also a strong and variable hyperchromism (Scherz and Parson, 1984a, b)

    Structure and function of the bacterial heterodimeric ABC transporter CydDC: stimulation of ATPase activity by thiol and heme compounds.

    Get PDF
    In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport

    Three Novel Mutations in the PHEX Gene in Chinese Subjects with Hypophosphatemic Rickets Extends Genotypic Variability

    Get PDF
    Mutations in the phosphate-regulating endopeptidase homolog, X-linked, gene (PHEX), which encodes a zinc-dependent endopeptidase that is involved in bone mineralization and renal phosphate reabsorption, cause the most common form of hypophosphatemic rickets, X-linked hypophosphatemic rickets (XLH). The distribution of PHEX mutations is extensive, but few mutations have been identified in Chinese with XLH. We extracted genomic DNA and total RNA from leukocytes obtained from nine unrelated Chinese subjects (three males and six females, age range 11–36 years) who were living in Taiwan. The PHEX gene was amplified from DNA by PCR, and the amplicons were directly sequenced. Expression studies were performed by reverse-transcription PCR of leukocyte RNA. Serum levels of FGF23 were significantly greater in the patients than in normal subjects (mean 69.4 ± 18.8 vs. 27.2 ± 8.4 pg/mL, P < 0.005), and eight of the nine patients had elevated levels of FGF23. Germline mutations in the PHEX gene were identified in five of 9 patients, including novel c.1843 delA, donor splice site mutations c.663+2delT and c.1899+2T>A, and two previously reported missense mutations, p.C733Y and p.G579R. These data extend the spectrum of mutations in the PHEX gene in Han Chinese and confirm variability for XLH in Taiwan

    Persistence of dissolved organic matter explained by molecular changes during its passage through soil

    Get PDF
    Dissolved organic matter affects fundamental biogeochemical processes in the soil such as nutrient cycling and organic matter storage. The current paradigm is that processing of dissolved organic matter converges to recalcitrant molecules (those that resist degradation) of low molecular mass and high molecular diversity through biotic and abiotic processes. Here we demonstrate that the molecular composition and properties of dissolved organic matter continuously change during soil passage and propose that this reflects a continual shifting of its sources. Using ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, we studied the molecular changes of dissolved organic matter from the soil surface to 60 cm depth in 20 temperate grassland communities in soil type Eutric Fluvisol. Applying a semi-quantitative approach, we observed that plant-derived molecules were first broken down into molecules containing a large proportion of low-molecular-mass compounds. These low-molecular-mass compounds became less abundant during soil passage, whereas larger molecules, depleted in plant-related ligno-cellulosic structures, became more abundant. These findings indicate that the small plant-derived molecules were preferentially consumed by microorganisms and transformed into larger microbial-derived molecules. This suggests that dissolved organic matter is not intrinsically recalcitrant but instead persists in soil as a result of simultaneous consumption, transformation and formation

    Drug-Class Specific Impact of Antivirals on the Reproductive Capacity of HIV

    Get PDF
    Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently

    Neurotrophic Effect of Citrus 5-Hydroxy-3,6,7,8,3′,4′-Hexamethoxyflavone: Promotion of Neurite Outgrowth via cAMP/PKA/CREB Pathway in PC12 Cells

    Get PDF
    5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF), a hydroxylated polymethoxyflavone, is found exclusively in the Citrus genus, particularly in the peels of sweet orange. In this research, we report the first investigation of the neurotrophic effects and mechanism of 5-OH-HxMF in PC12 pheochromocytoma cells. We found that 5-OH-HxMF can effectively induce PC12 neurite outgrowth accompanied with the expression of neuronal differentiation marker protein growth-associated protein-43(GAP-43). 5-OH-HxMF caused the enhancement of cyclic AMP response element binding protein (CREB) phosphorylation, c-fos gene expression and CRE-mediated transcription, which was inhibited by 2-naphthol AS-E phosphate (KG-501), a specific antagonist for the CREB-CBP complex formation. Moreover, 5-OH-HxMF-induced both CRE transcription activity and neurite outgrowth were inhibited by adenylate cyclase and protein kinase A (PKA) inhibitor, but not MEK1/2, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) or calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. Consistently, 5-OH-HxMF treatment increased the intracellular cAMP level and downstream component, PKA activity. We also found that addition of K252a, a TrKA antagonist, significantly inhibited NGF- but not 5-OH-HxMF-induced neurite outgrowth. These results reveal for the first time that 5-OH-HxMF is an effective neurotrophic agent and its effect is mainly through a cAMP/PKA-dependent, but TrKA-independent, signaling pathway coupling with CRE-mediated gene transcription. A PKC-dependent and CREB-independent pathway was also involved in its neurotrophic action

    A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer's as a case study

    Get PDF
    Abstract Background A molecular characterization of Alzheimer's Disease (AD) is the key to the identification of altered gene sets that lead to AD progression. We rely on the assumption that candidate marker genes for a given disease belong to specific pathogenic pathways, and we aim at unveiling those pathways stable across tissues, treatments and measurement systems. In this context, we analyzed three heterogeneous datasets, two microarray gene expression sets and one protein abundance set, applying a recently proposed feature selection method based on regularization. Results For each dataset we identified a signature that was successively evaluated both from the computational and functional characterization viewpoints, estimating the classification error and retrieving the most relevant biological knowledge from different repositories. Each signature includes genes already known to be related to AD and genes that are likely to be involved in the pathogenesis or in the disease progression. The integrated analysis revealed a meaningful overlap at the functional level. Conclusions The identification of three gene signatures showing a relevant overlap of pathways and ontologies, increases the likelihood of finding potential marker genes for AD.</p

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    E-commerce ethics and its impact on buyer repurchase intentions and loyalty: an empirical study of small and medium Egyptian businesses

    Get PDF
    The theoretical understanding of e-commerce has received much attention over the years; however, relatively little focus has been directed towards e-commerce ethics, especially the SMEs B2B e-commerce aspect. Therefore, the purpose of this paper is to develop and empirically test a framework that explains the impact of SMEs B2B e-commerce ethics on buyer repurchase intentions and loyalty. Using SEM to analyse the data collected from a sample of SME e-commerce firms in Egypt, the results indicate that buyers’ perceptions of supplier ethics construct is composed of six dimensions (security, non-deception, fulfilment/reliability, service recovery, shared value, and communication) and strongly predictive of online buyer repurchase intentions and loyalty. Furthermore, our results also show that reliability/fulfilment and non-deception are the most effective relationship-building dimensions. In addition, relationship quality has a positive effect on buyer repurchase intentions and loyalty. The results offer important implications for B2B e-commerce and are likely to stimulate further research in the area of relationship marketing
    corecore