326 research outputs found

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 1: System design, performance, and cost analysis

    Get PDF
    The technical and economical feasibility of using the 12 GHz band for broadcasting from satellites were examined. Among the assigned frequency bands for broadcast satellites, the 12 GHz band system offers the most channels. It also has the least interference on and from the terrestrial communication links. The system design and analysis are carried out on the basis of a decision analysis model. Technical difficulties in achieving low-cost 12 GHz ground receivers are solved by making use of a die cast aluminum packaging, a hybrid integrated circuit mixer, a cavity stabilized Gunn oscillator and other state-of-the-art microwave technologies for the receiver front-end. A working model was designed and tested, which used frequency modulation. A final design for the 2.6 GHz system ground receiver is also presented. The cost of the ground-terminal was analyzed and minimized for a given figure-of-merit (a ratio of receiving antenna gain to receiver system noise temperature). The results were used to analyze the performance and cost of the whole satellite system

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference

    Get PDF
    The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year

    Parallel assessment of male reproductive function in workers and wild rats exposed to pesticides in banana plantations in Guadeloupe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence that reproductive abnormalities are increasing in frequency in both human population and among wild fauna. This increase is probably related to exposure to toxic contaminants in the environment. The use of sentinel species to raise alarms relating to human reproductive health has been strongly recommended. However, no simultaneous studies at the same site have been carried out in recent decades to evaluate the utility of wild animals for monitoring human reproductive disorders. We carried out a joint study in Guadeloupe assessing the reproductive function of workers exposed to pesticides in banana plantations and of male wild rats living in these plantations.</p> <p>Methods</p> <p>A cross-sectional study was performed to assess semen quality and reproductive hormones in banana workers and in men working in non-agricultural sectors. These reproductive parameters were also assessed in wild rats captured in the plantations and were compared with those in rats from areas not directly polluted by humans.</p> <p>Results</p> <p>No significant difference in sperm characteristics and/or hormones was found between workers exposed and not exposed to pesticide. By contrast, rats captured in the banana plantations had lower testosterone levels and gonadosomatic indices than control rats.</p> <p>Conclusion</p> <p>Wild rats seem to be more sensitive than humans to the effects of pesticide exposure on reproductive health. We conclude that the concept of sentinel species must be carefully validated as the actual nature of exposure may varies between human and wild species as well as the vulnerable time period of exposure and various ecological factors.</p

    Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    Get PDF
    BACKGROUND: Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. METHODOLOGY: We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. CONCLUSIONS: Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals

    Defining the Plasticity of Transcription Factor Binding Sites by Deconstructing DNA Consensus Sequences: The PhoP-Binding Sites among Gamma/Enterobacteria

    Get PDF
    Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs) using a machine learning method inspired by the “Divide & Conquer” strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target genes and/or the promoter architectures resulting from the interaction of those binding sites with the RNA polymerase
    corecore