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Introduction

Discharge on the ITER tokamak will preferably start and end up with plasma touching the

inboard (HFS) limiter before shaping into the divertor configuration. In order to avoid exceeding

the designed limit of the Beryllium enhanced heat flux limiters (4.7MW/m2), its shape has

to be optimized in order to receive the power everywhere equally. The optimum shape has

been derived based on observation that the SOL radial profile of the power flux decays mostly

exponentially, q|| = q0||exp(−r/λ
omp
q ). Therefore, a logarithmic shape

y =−λ
omp
q · ln(1− C · x

λ
omp
q

), (1)
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a) b)

Figure 1: a) 3D drawing of the ITER inner wall limiter [1]. b) Limiter optimized for constant power

everywhere [1] for SOL plasma characterised by exponential decay length λ
omp
q .

R [m] a [m] Ip[kA] B [T] data heating isotope Meas. of Te processed by

ITER 6.0 2.0 3500-7500 5.3 3 NBI H,D,He - Shimada

JET 2.8 0.98 1500,2500 2.8 33 none D swept Langmuir Silva, Horacek

Tore Supra 2.2 0.65 500-1200 2.6-4.1 121 none D tunnel + RFA Gunn

DIII-D 1.7 0.6 600-1200 1.9 23 none D harmonic technique Tsui, Rudakov

C-Mod 0.68 0.22 400-1100 4-7 19 none D scanning Mirror [6] LaBombard

KSTAR 1.78 0.47 400 1.99 1 NBI D swept Langmuir J.-G. Bak

TEXTOR 1.73 0.46 ± 200-400 ± 1.3-2.6 55 NBI D triple probe Horacek

EAST 1.85 0.46 300 1.96 2 none D triple probe G.S. Xu

HL-2A 1.67 0.36 100-220 1.36 39 ECH+NBI D triple probe L. Nie, Wang

FTU 0.94 0.28 250-500 2.7-7.5 3x9 none D swept Langmuir Maddaluno, Pericoli

COMPASS 0.55 0.2 80-180 1.15 91 none H, D swept Langmuir, BPP Horacek, Seidl

CASTOR 0.4 0.08 9 1.3 3 none H swept Langmuir ref. [2]

Table 1: Overview of parameters of the used tokamak plasmas. TEXTOR includes both directions of B

and Ip. The data being processed by different persons and temperature measured by different techniques

yield probably to systematic errors in λ
omp
q .

shown in Figure 1, yields theoretically an almost constant power flux across the entire surface

of the limiter. Scaling of λ
omp
q is, however, available only for diverted plasmas, specified in

the ITER Physics basis [4]. Experiments on Tore Supra demonstrated [5] that this scaling is not

valid for circular limiter plasmas and that a single parameter determines λ
omp
q : the ohmic power.

Recently, a theory-based model capable of a credible prediction of λ
omp
q has been developed

[3], concluding that λ
omp
q should scale only with q95, ρ∗, νgbs. Those parameters rely, however,

on probe measurements of Te,ne at LCFS which is subject of large error on current tokamaks

(especially Te and exact localization of LCFS) as well as nLCFS
e in ITER is subject to factor of 2

uncertainty. Alternative (perhaps better) choice is thus a scaling based on engineering or those

global plasma parameters well-known for ITER.

Scaling based on a single tokamak [5] is not sufficient for extrapolation to a larger tokamak,

ITER. Therefore, we collected data from 450 probe strokes on 11 tokamaks worldwide, varying

from the smallest plasmas (CASTOR with plasma volume 0.06 m3, Ip = 9kA) up to JET with

70 m3, Ip = 2500kA. Overview of the used tokamaks is compiled in Table 1.
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Figure 2: An engineering scaling. The corresponding ITER predictions lie on the line.

Experimental results

The experiments were performed with various reciprocating probes. Each measured radial pro-

file of the ion saturation current density jsat and electron temperature Te. The parallel heat flux

is then q ∝ jsatTe and the desired λ
omp
q is then the decay length of the radial profile fit.

16 global plasma parameters were measured at the same time, thus constructing a valuable

matrix of 16×450 data-points. We use the statistical package Gretl to perform multi-parameter

least-squares fit with robust standard errors, weighting each value of λ
omp
q by the radial-profile

fit quality (R2 combined with λ
omp
q /λ error

q ratio).

We find that the dominant parameter of the scaling is either the total input power (consistent

with [5]), Ptot, PSOL, Ip, or LCFS plasma pressure β , which vary from one discharge to another

within each tokamak. Due to natural high mutual correlation of Ptot, PSOL, Ip, β only one of

those can be used in a particular scaling. All the other parameters then only slightly refine

λ
omp
q for a particular tokamak. Combinations with high mutual correlations must be excluded.

Prediction for ITER

A dozen of reasonable scalings are shown in Table 2 using various combinations of global

plasma parameters. Fortunately, we observe that those scalings yield very similar prediction

for ITER, even though using very different parameter combinations. Mapped to inboard

midplane (with flux expansion of 1.6), the worst case (7.5 MA) corresponds to optimum

toroidal shaping of the FW panel with λ
omp
q = 7±2cm, thus consolidating the initial design
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λ
omp
q [mm] ITER prediction

Scalings (dimensionless or in SI units) 2.5MA 5.0MA 7.5MA R2

72.1 ·q−0.81
95 (a/R)3.64R[m]0.54ν

−0.18
gbs ρ∗−1.13Ip[A]−1 70±17 49±12 43±10 77%

q−0.72
95 (a/R)2.96ν

−0.21
gbs ρ∗−1.24Ip[A]−0.81 59±13 44±10 40±9 73%

0.00158 ·β−0.33(a/R)0.86κ0.59 57±13 53±14 43±11 73%

4.07 · (Ip/A[A/m2])−0.4(a/R)1.54κ−1.34ρ∗−0.29 76±21 49±15 44±12 70%

10 · (Ptot/V [W/m3])−0.38(a/R)1.3κ−1.3 67±19 47±15 42±13 65%

501 · (Ptot/V [W/m3 ])−0.28(a/R)1.46κ−1.11 < ne > [m−3]−0.11 76±22 50±16 44±13 64%

20.6 · (a/R)2.04R[m]0.94κ−0.82Ptot [W ]−0.34 67±19 47±15 41±12 63%

7.08×106 · (Ip/A[A/m2 ])−0.77(a/R)1.61κ−1.8 < ne > [m−3 ]−0.14Bpol [T ]0.48 93±30 53±18 48±15 62%

6.76×104 · (Ip/A[A/m2])−0.89(a/R)1.5κ−1.89Bpol[T ]0.52 91±29 55±18 50±16 61%

0.00108 ·q0.29
95 ν

−0.1
gbs ρ∗−0.29 86±24 70±19 57±16 60%

1.72 · (Ptot/V [W/m3])−0.28q0.17
95 (a/R)0.96 88±26 73±21 56±16 58%

Average 76±21 54±16 46±13

Table 2: The final scalings and consequent ITER predictions (the 95%-confidence intervals) of the SOL

width at outboard midplane for the three start-up scenarios.

choice of 5 cm. Note that much steeper gradients have been found in the region near separatrix

(λ omp
q shorter by order of magnitude) at high-field side of tokamaks, described in [7]. Both

predictions of the near and the here-scaled main SOL decay lengths are required for best ITER

HFS limiter, designed finally in [8]. Details of this work can be found in [9].
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