27 research outputs found
Marine reserves can mitigate and promote adaptation to climate change
Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future
Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations
Purpose
To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics.
Patients and Methods
One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS).
Results
There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO.
Conclusion
Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
The Role of the Rho GEF Arhgef2 in RAS Tumorigenesis
Tumorigenesis is driven by the sequential accumulation of genetic lesions within a cell, each which confer the cell with traits that enable its abnormal growth. The result is a mass of dysregulated cells, or tumor, which, upon further mutation, may spread, or metastasize, to other organs of the body. The dissemination of tumor cells makes treatment difficult, and thus confers cancer with its associated lethality. Over the past 30 years, the RAS genes have been critical in teaching us the mechanisms underlying the molecular progression of cancer. RAS is mutated in 33% of all cancers and is often an early event in its stepwise progression. As a result, the RAS genes are widely accepted as ‘drivers’ or ‘initiators’ of human tumorigenesis. Unfortunately, efforts directed at targeting RAS in the clinic have as of yet been unsuccessful. This has triggered a need to identify genes that are required for RAS tumorigenesis that are therapeutically tractable.
My research has focused on deciphering the potential role of the Rho GEF Arhgef2 in RAS-mediated tumorigenesis. I have found that Arhgef2 is a bona fide transcriptional target of RAS and is upregulated in human tumors harboring RAS mutations. Importantly, depletion of Arhgef2 in RAS-mutated cells inhibits their survival, proliferation, and tumor growth in murine models. In search of the mechanism underlying the requirement of Arhgef2 in RAS tumorigenesis, I have uncovered a novel function for Arhgef2 as a positive regulator of a central RAS pathway, the mitogen-activated protein kinase (MAPK) pathway. Thus, Arhgef2 is part of a positive feedback loop in which RAS-dependent increases in Arhgef2 expression results in the amplification of RAS signaling. Moreover, Arhgef2 confers tumor cells with properties favoring their malignant conversion, thereby implicating Arhgef2 in the formation of metastases. Together, these studies suggest that Arhgef2 plays an important role at multiple stages of tumorigenic progression and may therefore be a promising therapeutic target in RAS-mutated tumors.Ph
The impact of Sure Start local programmes on 5-year-olds and their families
The ultimate goal of Sure Start Local Programmes (SSLPs) was to enhance the life chances for young children growing up in disadvantaged neighbourhoods. Children in these communities are at risk of doing poorly at school, having trouble with peers and agents of authority (i.e., parents, teachers), and ultimately experiencing compromised life chances (e.g., early school leaving, unemployment, limited longevity). This has profound consequences not just for the children but for their families, communities, and for society at large
The impacts of long-term flow reductions and an extreme drought on a large, permanently open estuary, and implications for setting the ecological reserve
Environmental water requirements (EWRs) are set for South Africa’s estuaries to ensure that they are maintained in a state that is both achievable and commensurate with their level of conservation and economic importance. However, these EWRs are typically determined on the basis of models and scenario analyses that require extrapolation beyond existing data and experience, especially if climate change is considered. In the case of the Berg Estuary, South Africa, available data on changes in freshwater flow and water quality span a period of at least five decades (1970s–present) during which significant reduction in flows has been observed. Monitoring data also cover an extreme 3-year drought, from 2015−2017, which provided a unique opportunity to study the effects of severe freshwater starvation (zero-flow for an extended period) on this large, permanently open system. Our analyses show that mean annual runoff (MAR) under present-day conditions has been reduced to around 50% of that under reference (natural) conditions and that reduction in runoff during the low-flow season (summer) has been more severe (80–86% reduction) than for the high-flow season (39–42% reduction). The salinity gradient now extends much further upstream than under reference conditions. Hypersaline conditions along with a reverse salinity gradient were recorded in the estuary for the first time ever during the drought of 2015/17. Levels of dissolved inorganic nitrogen (NOx) reaching the estuary from the catchment have increased dramatically (6–7 fold) over the past five decades, dissolved reactive phosphate (PO4) slightly less so (2–3 fold), but ammonia (NH4) hardly at all. Increases in nutrient input from the catchment in the high-flow season are also much more dramatic than in the low-flow season. The estuary is no longer compliant with gazetted EWRs and requires urgent interventions to restore the quantity and quality of freshwater it receives.
 
Interrogation of Functional Cell-Surface Markers Identifies CD151 Dependency in High-Grade Serous Ovarian Cancer
The degree of genetic aberrations characteristic of high-grade serous ovarian cancer (HGSC) makes identification of the molecular features that drive tumor progression difficult. Here, we perform genome-wide RNAi screens and comprehensive expression analysis of cell-surface markers in a panel of HGSC cell lines to identify genes that are critical to their survival. We report that the tetraspanin CD151 contributes to survival of a subset of HGSC cell lines associated with a ZEB transcriptional program and supports the growth of HGSC tumors. Moreover, we show that high CD151 expression is prognostic of poor clinical outcome. This study reveals cell-surface vulnerabilities associated with HGSC, provides a framework for identifying therapeutic targets, and reports a role for CD151 in HGSC