14 research outputs found

    Experimental Investigation of Permeability and Fluid Loss Properties of Water Based Mud under High Temperature-High Pressure Conditions

    Get PDF
    Drilling in deeper formations and in high pressure and high temperature (HPHT) environments is a new frontier for the oil industry. Fifty years ago, no one would have imagined drilling in more than 10,000 feet of water depth like we do today. However, more issues need to be researched, tested, and studied in order to maintain a good drilling efficiency as deeper depths are drilled. One of these issues is the great effect that drilling at HPHT conditions has on the behavior of drilling fluids.The goal of this research was to study fluid loss properties of water based mud and its effect on permeability under HPHT dynamic conditions utilizing advanced laboratory equipment that allows for wide ranges of pressure and temperature. Filtration tests were performed at both ambient and HPHT conditions. After several laboratory evaluations of fluid loss additives available in the market, Polysal HT was found to be the most effective in reducing the fluid loss of the water based mud for both static and dynamic tests at HPHT conditions. It is economically designed to be saturated in salt and other brine system. An additive that encapsulates particles with protective polymer coating as colloid. Drilling fluid stabilizer especially in drilling hydratable shale and a remarkable effectiveness in wide range make up water (high saline and high hardness). The fluid loss behavior of the mud and the characteristics of the filter cake produced are the basic factors that need to be considered when determining mud treatment.A detailed workflow of experiments using equipment from OFITE HPHT Fluid Apparatus with differential pressure of 500 psi under 230°F with 2.5” filter paper (30 minutes) as well as OFITE Permeable Plugging Tester with 1,200 psi differential pressure @ 230°F using a ceramic disc were conducted. Also tests were conducted using the Low Temperature- Low Pressure API Filter Press at 100 psi @77°F with 3.5” filter paper for the purpose of comparison. Key words: Permeability; Fluid loss; Water based mud; High pressure high temperatur

    Experimental Investigation of Permeability and Fluid Loss Properties of Water Based Mud Under High Pressure-High Temperature Conditions

    Get PDF
    ABSTRACT Drilling in deeper formations and in high pressure and high temperature (HPHT) environments is a new frontier for the oil industry. Fifty years ago, no one would have imagined drilling in more than 10,000 feet of water depth like we do today. However, more issues need to be researched, tested, and studied in order to maintain a good drilling efficiency as deeper depths are drilled. One of these issues is the great effect that drilling at HPHT conditions has on the behavior of drilling fluids. The goal of this research was to study fluid loss properties of water based mud and its effect on permeability under HPHT dynamic conditions utilizing advanced laboratory equipment that allows for wide ranges of pressure and temperature. Filtration tests were performed at both ambient and HPHT conditions. After several laboratory evaluations of fluid loss additives available in the market, Polysal HT was found to be the most effective in reducing the fluid loss of the water based mud for both static and dynamic tests at HPHT conditions. It is economically designed to be saturated in salt and other brine system. An additive that encapsulates particles with protective polymer coating as colloid. Drilling fluid stabilizer especially in drilling hydratable shale and a remarkable effectiveness in wide range make up water (high saline and high hardness). The fluid loss behavior of the mud and the characteristics of the filter cake produced are the basic factors that need to be considered when determining mud treatment. A detailed workflow of experiments using equipment from OFITE HPHT Fluid Apparatus with differential pressure of 500 psi under 230°F with 2.5" filter paper (30 minutes) as well as OFITE Permeable Plugging Tester with 1,200 psi differential pressure @ 230°F using a ceramic disc were conducted. Also tests were conducted using the Low Temperature-Low Pressure API Filter Press at 100 psi @77°F with 3.5" filter paper for the purpose of comparison

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Introduction to metallic nanoparticles

    No full text
    Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe3O4), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe3O4), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer
    corecore