76 research outputs found

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    Microglia are not required for prion-induced retinal photoreceptor degeneration

    No full text
    Abstract Degeneration of photoreceptors in the retina is a major cause of blindness in humans. Often retinal degeneration is due to inheritance of mutations in genes important in photoreceptor (PR) function, but can also be induced by other events including retinal trauma, microvascular disease, virus infection or prion infection. The onset of apoptosis and degeneration of PR neurons correlates with invasion of the PR cellular areas by microglia or monocytes, suggesting a causal role for these cells in pathogenesis of PR degenerative disease. To study the role of microglia in prion-induced retinal disease, we fed prion-infected mice a CSF-1 receptor blocking drug, PLX5622, to eliminate microglia in vivo, and the effects on retinal degeneration were analyzed over time. In mice not receiving drug, the main inflammatory cells invading the degenerating PR areas were microglia, not monocytes. Administration of PLX5622 was highly effective at ablating microglia in retina. However, lack of microglia during prion infection did not prevent degeneration of PR cells. Therefore, microglia were not required for the PR damage process during prion infection. Indeed, mice lacking microglia had slightly faster onset of PR damage. Similar results were seen in C57BL/10 mice and transgenic mice expressing GFP or RFP on microglia and monocytes, respectively. These results were supported by experiments using prion-infected Cx3cr1 knockout mice without PLX5622 treatment, where microglial expansion in retina was delayed, but PR degeneration was not. Contrary to predictions, microglia were not a causative factor in retinal damage by prion infection. Instead, newly generated PrPSc accumulated around the inner segment region of the PR cells and appeared to correlate with initiation of the pathogenic process in the absence of microglia

    Non-amyloid and amyloid prion protein deposits in prion-infected mice differ in blockage of interstitial brain fluid

    No full text
    Aims: Prion diseases are characterized by brain deposits of misfolded aggregated protease-resistant prion protein (PrP), termed PrPres. In humans and animals, PrPres is found as either disorganized non-amyloid aggregates or organized amyloid fibrils. Both PrPres forms are found in extracellular spaces of the brain. Thus, both might block drainage of brain interstitial fluid (ISF). The present experiments studied whether ISF blockage occurred during amyloid and/or non-amyloid prion diseases. Methods: Various-sized fluorescein-labelled ISF tracers were stereotactically inoculated into the striatum of adult mice. At times from 5min to 77h, uninfected and scrapie-infected mice were compared. C57BL/10 mice expressing wild-type anchored PrP, which develop non-amyloid PrPres similar to humans with sporadic Creutzfeldt-Jakob disease, were compared with Tg44+/+ mice (transgenic mice secreting anchorless PrP) expressing anchorless PrP, which develop amyloid PrPres similar to certain human familial prion diseases. Results: In C57BL/10 mice, extensive non-amyloid PrPres aggregate deposition was not associated with abnormal clearance kinetics of tracers. In contrast, scrapie-infected Tg44+/+ mice showed blockage of tracer clearance and colocalization of tracer with perivascular PrPres amyloid. Conclusions: As tracer localization and clearance was normal in infected C57BL/10 mice, ISF blockage was not an important pathogenic mechanism in this model. Therefore, ISF blockage is unlikely to be a problem in non-amyloid human prion diseases such as sporadic Creutzfeldt-Jakob disease. In contrast, partial ISF blockage appeared to be a possible pathogenic mechanism in Tg44+/+ mice. Thus this mechanism might also influence human amyloid prion diseases where expression of anchorless or mutated PrP results in perivascular amyloid PrPres deposition and cerebral amyloid angiopathy
    • …
    corecore