198 research outputs found

    Sites and diffusion of muons in FCC metal hydride systems

    Get PDF
    A positive muon can be considered an isotope of hydrogen due to similarities in spin and charge. For metal hydride systems, the muon enters the sample as the last hydrogen added, and competes for the same sites as the hydrogen atoms. to observe the site competition and diffusion of both particles (muon and proton), several FCC metal hydrides, TiH{dollar}\sb{lcub}1.83{rcub}{dollar}, TiH{dollar}\sb{lcub}1.97{rcub}{dollar}, TiH{dollar}\sb{lcub}1.99{rcub}{dollar}, YH{dollar}\sb{lcub}1.77{rcub}{dollar}, YH{dollar}\sb2{dollar}, ZrH{dollar}\sb{lcub}1.94{rcub}{dollar}, and LaH{dollar}\sb{lcub}2.06{rcub}{dollar}, were studied using transverse-, zero-, and low longitudinal-field {dollar}\mu{dollar}SR. The low temperature region results indicate that the muon predominately occupies octahedral sites for the FCC metal hydrides in this study. The probability for a muon to occupy a tetrahedral site in titanium and zirconium hydrides at these temperatures is proportional to the vacancy concentration. Whereas the probability for T site occupation in yttrium hydride is proportional to the number of protons not occupying these sites which increases with hydrogen concentration. Muon T site occupancy below room temperature for LaH{dollar}\sb{lcub}2.06{rcub}{dollar} was not observed and was not expected since these sites are occupied by protons. Around 300 K, the muon diffuses over interstitial O sites to vacancies in the H sublattice of TiH{dollar}\sb{lcub}1.99{rcub}.{dollar} The vibration of the hydrogen lattice is found to be the mechanism responsible for the activation of the muon out of the O site. Above room temperature, the muon occupies tetrahedral sites in yttrium and titanium hydrides. at high temperatures, the field-correlation time for a muon in titanium and yttrium hydrides is approximately one to two orders of magnitude greater than for a proton as measured by NMR. The results of a Monte Carlo simulation indicate that the presence of the muon inhibits the motion of the nearest-neighbor protons at high temperatures. The dynamics of the proton spins are observed by zero- and low longitudinal-field {dollar}\mu{dollar}SR through the oscillation of the muon polarization at long times for a static muon in a T or O site. This observation is not predicted by the Kubo-Toyabe treatment for a stationary muon

    Visual versus visual-inertial guidance in hawks pursuing terrestrial targets

    Get PDF
    The aerial interception behaviour of falcons is well modelled by a guidance law called proportional navigation, which commands steering at a rate proportional to the angular rate of the line-of-sight from predator to prey. Because the line-of-sight rate is deļ¬ned in an inertial frame of reference, proportional navigation must be implemented using visual-inertial sensor fusion. In contrast, the aerial pursuit behaviour of hawks chasing terrestrial targets is better modelled by a mixed guidance law combining information on the line-of-sight rate with information on the deviation angle between the attackerā€™s velocity and the line-of-sight. Here we ask whether this behaviour may be controlled using visual information alone. We use high-speed motion capture to record n=228 ļ¬‚ights from N=4 Harrisā€™ hawks Parabuteo unicinctus, and show that proportional navigation and mixed guidance both model their trajectories well. The mixed guidance law also models the data closely when visual-inertial information on the line-of-sight rate is replaced by visual information on the motion of the target relative to its background. Although the visual-inertial form of the mixed guidance law provides the closest ļ¬t, all three guidance laws provide an adequate phenomenological model of the behavioural data, whilst making diļ¬€erent predictions on the physiological pathways involved

    Obstacle avoidance in aerial pursuit

    Get PDF
    Pursuing prey through clutter is a complex and risky activity requiring integration of guidance subsystems for obstacle avoidance and target pursuit. The unobstructed pursuit trajectories of Harrisā€™ hawks Parabuteo unicinctus are well modeled by a mixed guidance law feeding back target deviation angle and line-of-sight rate. Here we ask how their pursuit behavior is modified in response to obstacles, using high-speed motion capture to reconstruct flight trajectories recorded during obstructed pursuit of maneuvering targets. We find that Harrisā€™ hawks use the same mixed guidance law during obstructed pursuit but appear to superpose a discrete bias command that resets their flight direction to aim at a clearance of approximately one wing length from an upcoming obstacle as they reach some threshold distance from it. Combining a feedback command in response to target motion with a feedforward command in response to upcoming obstacles provides an effective means of prioritizing obstacle avoidance while remaining locked-on to a target. We therefore anticipate that a similar mechanism may be used in terrestrial and aquatic pursuit. The same biased guidance law could also be used for obstacle avoidance in drones designed to intercept other drones in clutter, or to navigate between fixed waypoints in urban environments

    Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)

    Get PDF
    Copyright @ 1989 American Institute of PhysicsBimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gasesā€”Mu+X2ā†’MuX+Xā€”are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(āˆ’0.095Ā±0.020) kcalā€‰molāˆ’1], constant over the temperature range of āˆ¼200ā€“400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This result is consistent with the energy dependence in the reactive cross section found some years ago in the atomic beam data of Hepburn et al. [J. Chem. Phys. 69, 4311 (1978)]. In comparing the present Mu data with the corresponding H atom kinetic data, it is found that Mu invariably reacts considerably faster than H at all temperatures, but particularly so at low temperatures in the cases of F2 and Cl2. The current transition state calculations of Steckler, Garrett, and Truhlar [Hyperfine Interact. 32, 779 (986)] for Mu+X2 account reasonably well for the rate constants for F2 and Cl2 near room temperature, but their calculated value for Mu+Br2 is much too high. Moreover, these calculations seemingly fail to account for the trend in the Mu+F2 and Mu+Cl2 data toward pronounced quantum tunneling at low temperatures. It is noted that the Mu kinetics provide a crucial test of the accuracy of transition state treatments of tunneling on these early barrier HX2 potential energy surfaces.NSERC (Canada), Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their partial support of this research and the Canada Council

    The application of differential ratings of perceived exertion to Australian Football League matches

    Get PDF
    Objectives: To investigate the application of differential ratings of perceived exertion for the examination of internal load during Australian Football League (AFL) matches. Design: Single cohort, observational study. Methods: Using the centiMax rating of perceived exertion (RPE) scale, 26 professional AFL players provided ratings for match exertion (RPE-M), along with differential ratings for breathlessness (RPE-B), leg exertion (RPE-L), and technical demand (RPE-T) following 129 matches (5.0 Ā± 1.6 matches per player). Global positioning satellite (GPS) and accelerometer measures were also collected. Data were analysed using magnitude-based inferences. Results: RPE scores were 93.0 Ā± 8.2 AU (RPE-M), 89.0 Ā± 11.0 AU (RPE-B), 91.5 Ā± 9.8 AU (RPE-L), and 87.0 Ā± 10.0 AU (RPE-T). There was a most likely small difference between RPE-L and RPE-T (5.5%; Ā±90% confidence limits 1.9%), a likely small difference between RPE-L and RPE-B (3.5%; Ā±1.5%) and a possibly small difference between RPE-B and RPE-T (1.9%; Ā±1.9%). Within-player correlations between RPE and GPS measures were small for RPE-M (r = 0.14ā€“0.28), unclear to small for RPE-B (r = 0.06ā€“0.24) and unclear to moderate for RPE-L (r = 0.06ā€“0.37). Differential RPE's combined to explain 76% of the variance in RPE-M. For all RPE scores, within-player variability was moderate to high (typical error: 7.9ā€“12.4%), and the thresholds for a likely between-match change were 8.8ā€“13.7%. Conclusions: As differential RPE's represent distinct sensory inputs, the collection of these scores facilitate the interpretation of internal match loads and therefore represent a valuable addition to match data collection procedures. Moderate to high within-player variability should be considered when interpreting between-match changes in all RPE scores

    Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea

    Get PDF
    Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing albatrosses to glide over vast distances. However, its use is challenging to demonstrate empirically and has yet to be confirmed in other seabirds. Here, we investigate how flap-gliding Manx shearwaters optimize their flight for dynamic soaring. We do so by deriving a new metric, the horizontal wind effectiveness, that quantifies how effectively flight harvests energy from a shear layer. We evaluate this metric empirically for fine-scale trajectories reconstructed from bird-borne video data using a simplified flight dynamics model. We find that the birdsā€™ undulations are phased with their horizontal turning to optimize energy harvesting. We also assess the opportunity for energy harvesting in long-range, GPS-logged foraging trajectories and find that Manx shearwaters optimize their flight to increase the opportunity for dynamic soaring during favorable wind conditions. Our results show how small-scale dynamic soaring affects large-scale Manx shearwater distribution at sea.publishedVersio

    Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea

    Get PDF
    Funding: This work was supported by the University of Oxford Christopher Welch Scholarship (to J.A.K.); ASAB Undergraduate Project Scholarship (to J.A.K.); UKRI BBSRC scholarship grant number BB/M011224/1 (to J.W. and N.G.); The Queenā€™s College, University of Oxford (to A.L.F.); Junior Research Fellowship at St. Johnā€™s College, University of Oxford (to O.P.); Merton College, University of Oxford (to T.G.); Mary Griffiths Award (to T.G.); BBSRC David Phillips Fellowship grant numbers BB/G023913/1 and BB/ G023913/2 (to C.R.); and Jesus College, University of Oxford (to G.K.T.). This project has received funding from the European Research Council (ERC) under the European Unionā€™s Horizon 2020 research and innovation programme (grant agreement no. 682501) (to G.K.T.)Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing albatrosses to glide over vast distances. However, its use is challenging to demonstrate empirically and has yet to be confirmed in other seabirds. Here, we investigate how flap-gliding Manx shearwaters optimize their flight for dynamic soaring. We do so by deriving a new metric, the horizontal wind effectiveness, that quantifies how effectively flight harvests energy from a shear layer. We evaluate this metric empirically for fine-scale trajectories reconstructed from bird-borne video data using a simplified flight dynamics model. We find that the birds' undulations are phased with their horizontal turning to optimize energy harvesting. We also assess the opportunity for energy harvesting in long-range, GPS-logged foraging trajectories and find that Manx shearwaters optimize their flight to increase the opportunity for dynamic soaring during favorable wind conditions. Our results show how small-scale dynamic soaring affects large-scale Manx shearwater distribution at sea.Publisher PDFPeer reviewe

    CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling

    Get PDF
    CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras[superscript G12D] mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Damon Runyon Cancer Research Foundation (Fellowship DRG-2117-12)Massachusetts Institute of Technology. Simons Center for the Social Brain (Postdoctoral Fellowship)European Molecular Biology Organization (Fellowship)Foundation for Polish Science (Fellowship)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research FellowshipMassachusetts Institute of Technology (Presidential Graduate Fellowship)Human Frontier Science Program (Strasbourg, France) (Postdoctoral Fellowship)National Human Genome Research Institute (U.S.) (CEGS P50 HG006193)Howard Hughes Medical InstituteKlarman Cell ObservatoryNational Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence Grant U54CA151884)National Institutes of Health (U.S.) (Controlled Release Grant EB000244)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C)Massachusetts Institute of Technology (Poitras Gift 1631119)Stanley CenterSimons Foundation (6927482)Nancy Lurie Marks Family Foundation (6928117)United States. Public Health Service (National Institutes of Health (U.S.) R01-CA133404)David H. Koch Institute for Integrative Cancer Research at MIT (Marie D. and Pierre Casimir-Lambert Fund)MIT Skoltech InitiativeNational Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Institute of Mental Health (U.S.) (Directorā€™s Pioneer Award DP1-MH100706)National Institute of Neurological Disorders and Stroke (U.S.) (Transformative R01 Grant R01-NS 07312401)National Science Foundation (U.S.) (Waterman Award)W. M. Keck FoundationKinship Foundation. Searle Scholars ProgramKlingenstein FoundationVallee FoundationMerkin Foundatio
    • ā€¦
    corecore