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ABSTRACT
A positive muon can be considered an isotope of 

hydrogen due to similarities in spin and charge. For metal 
hydride systems, the muon enters the sample "as the last 
hydrogen added," and competes for the same sites as the 
hydrogen atoms. To observe the site competition and dif­
fusion of both particles (muon and proton) , several FCC 
metal hydrides, T l H ^ ^ ,  TiHi TiHi gg, YHlt7 7 , VHj,
ZrH}_9 4 ( and LaHa.ofif were studied using transverse-, 
zero-, and low longitudinal-field jiSR. The low temperature 
region results indicate that the muon predominately oc­
cupies octahedral sites for the FCC metal hydrides in this 
study. The probability for a muon to occupy a tetrahedral 
site in titanium and zirconium hydrides at these tempera­
tures is proportional to the vacancy concentration.
Whereas the probability for T site occupation in yttrium 
hydride is proportional to the number of protons not 
occupying these sites which increases with hydrogen con­
centration. Kuon T site occupancy below room temperature 
for LaH?,06 not observed and was not expected since
these sites are occupied by protons. Around 3 00 K, the 
muon diffuses over interstitial O sites to vacancies in 
the H sublattice of TiH^gg. The vibration of the hydrogen 
lattice is found to be the mechanism responsible for the 
activation of the muon out of the O site. Above room 
temperature, the muon occupies tetrahedral sites in yt­
trium and titanium hydrides. At high temperatures, the 
field-correlation time for a muon in titanium and yttrium 
hydrides is approximately one to two orders of magnitude 
greater than for a proton as measured by NKR. The results 
of a Monte carlo simulation indicate that the presence of 
the muon inhibits the motion of the nearest-neighbor 
protons at high temperatures. The dynamics of the proton 
spins are observed by zero- and low longitudinal-field >iSR 
through the oscillation of the muon polarization at long 
times for a static muon in a T or 0 site. This observation 
is not predicted by the Kubo-Toyabe treatment for a sta­
tionary muon.

xii



SITES AND DIFFUSION OF MUONS 
IN FCC METAL HYDRIDE SYSTEMS



The Muon Spin dotation OSR) technique has existed 
for the past thirty years,1 At the time of its invention, 
it was recognized as an excellent tool for solid state 
physics. The advantages of using the muon as a probe are 
three-fold: its mass, which is one-ninth that of the 
proton, its point charge, and its large magnetic moment.2 
These features make it sensitive to quantum tunneling at 
low temperatures, internal magnetic fields, lattice 
defects and impurities. The time scale of sensitivity of 
this probe ranges from tens of microseconds to nanoseconds 
or smaller under optimal conditions. The short time scale 
is imposed by the electronics of the data collection 
systemr while the large time scale limit is due to the 
finite muon lifetime of 2.2 microseconds.1 However, the 
technique failed to grow in usage over the next fifteen 
years due to a lack of high Intensity meson factories.
This handicap allowed techniques such as NMR and ESR to 
become the preferred probe for exploring materials. In the 
early 70s with the building of high intensity meson facil­
ities such as SIN and TRIUMF, the use of this probe began 
to grow. People started to study ferromagnets, supercon­
ductors, semiconductors, and metals.3 Recently this tech­
nique has been used by the jjSR group at the College of

2
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William and Mary to determine the magnetic ordering in the 
superconducting state of the heavy fermlon compound 
CeCu2 ,iSi2 and the London penetration depth in high Tc 
superconductors (Laj.B5Sro.15Cuo4 and YBa2Cu3 (>7 ) .

This work is a study of FCC metal hydride systems 
using muons as a probe. These systems have been studied 
extensively with NMR and neutrons. These methods tend to 
measure quantities averaged over all nuclear sites, e.g. 
spin-lattice relaxation times and scattering cross sec­
tions. juSR is sensitive to the magnetic fields at inter­
stitial and substitutional sites. The muon's ability to 
occupy interstitial sites provides information not avail­
able to the techniques listed above. This study exploits 
the similarities between a muon and a proton, such as 
charge, spin and mass. For this reason, this work will 
focus on FCC metal hydride systems, where the metal has a 
very small magnetic moment, to study the interactions 
between protons and muons. These studies will serve as a 
guide for analysis of the results from experiments on a 
FCC hydride system which contains a metal having a mag­
netic moment. The hydride compounds which we have chosen 
are YHX fx-1.77 and 2.00), TiHy (y«l.B3, 1.97, and 1.99), 
ZrHlt94 and LaH2 .06,

In this set of experiments we started with samples 
hydrided close to stoichiometry. Due to the similarity 
between a proton and a muon, we expect the muon to behave 
as if it were the last hydrogen being added to the system.
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At low temperatures (T < 100 K) in high H concentration 
samples, the muon decays before it has a chance to find a 
vacant site in the hydrogen lattice. If the hydrogen 
concentration is lowered (or in other words the number of 
vacancies in the H sublattice is increased) the probabil­
ity for the muon to occupy one of these sites is in­
creased. As the temperature is raised, the muon is able to 
find vacant sites in the hydrogen lattice. At very high 
temperatures, one sees activation out of these sites with 
diffusion limited by the vacancy concentration.

In chapter 2, the experimental details of this study, 
such as the production of the muons, sample preparation, 
temperature control, and data collection, will be dis­
cussed. The focus of chapter 3 is to provide insight into 
some of the interactions between the muon and the hydrogen 
alloy. Chapter 4 is devoted to the diffusion processes of 
muons and protons in these metal hydrides. In Chapter 5, 
the measurement of the interactions between the muon and 
hydrogen alloy with the /iSR techniques in this study is 
discussed. Chapter 6 centers on an effort to model the 
effect of hydrogen motion on the depolarization of the 
muon's spin. In chapter 7, the results of the ^SR studies 
of metal hydride systems are presented and discussed.



CHAPTER 2
e x p e r i m e n t a l  DETAILS

2.1 MUON PRODUCTION4
Polarized positive muons are produced by the decay of 

mesons, such as pions and kaons.5 Since the yield of pions 
per incident proton is much greater than for kaons, the 
pion is the meson of choice. Pions can be produced by 
several reactions. One of these is a proton of energy 
greater than ISO MeV striking a production target (e.g. C, 
Be) and producing a pion by the following reactions:

p + p -----> + p + n
p + n -----> jr+ + n + n

(2.1)
(2 .2)

Conservation of angular momentum for these two reactions 
requires that the pion be a spin zero particle. If one 
increases the proton energy, then multiple production of 
pions may occur due to an increase in the number of proton 
interactions with the target.

The pion has a lifetime of 26 nanoseconds and decays 
into a muon and neutrino.

5
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1T+ ---- > fj+ + Up (2.3)

This weak decay violates parity and produces the polarized 
muon. In the center of mass frame of the positive pion, 
the muon and the muonic neutrino are emitted in opposite 
directions to conserve momentum. Since the neutrino has a 
negative helicity (left handed) , the spin vector of the 
muon must be antiparallel to its momentum.

For pions of finite momentum (~180 MeV/c)( a beam 
transport system consisting of at least a row of quad- 
rupole magnets, known as a muon channel, must be used. The 
purpose of the muon channel is to provide an area where 
the pions can decay. Other elements such as dipole magnets 
can be added to the beam transport system to select the 
momentum of the pions and muons. This type of beam is know 
as a decay beam. During the decay process, the transport 
system accepts muons which decay in a forward or backward 
direction (known as "forward'1 or "backward" muons) in the 
plan center of mass frame. The effective polarization of 
this muon beam is less than 100%. The loss of polarization 
is due to the acceptance by the beam transport system of 
muons whose momentum (in the pion center-of-mass frame) is 
not along the axis of the muon channel.

A second method of muon production is the surface 
beam. This beam is characterized by pion decay near the 
surface of the production target. This means that the lab 
frame and pion center of mass frame are the same and that
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the effective polarization of the nuon beam is 100% an- 
tlparallel to the beam momentum. The advantage of this 
type of beam Is that the muon can stop in a couple of 
milligrams of material as opposed to several grams for the 
decay beam. Due to the low amount of mass necessary to 
stop a surface beam, the entire beam line from the produc­
tion target to the sample must be under vacuum which 
complicates the transport, detector and cryostat systems.

The polarized muons at the Alternating Gradient Syn­
chrotron (AGS) at BrooXhaven National Laboratory (BNL) 
used in these experiments were produced by a decay beam. 
The pions were created by bombarding a platinum target 
with 2 8.3 GeV/c protons. Every 3.2 seconds an approximate­
ly square intensity envelope containing 1 x 1012 protons 
and of duration 1.0 seconds arrived at the production 
target. This produced 4000 muons at the sample. The char­
acteristics of the beam for the hydride experiments are 
listed in Table 2.1.

In order to observe internal fields in the sample, 
one needs to know the orientation of the muon's spin as a 
function of time. One can infer this by knowing the direc­
tion of the spin when the muon decays. The muon decays by 
the following parity violating weak decay

ju+  > e+ +■ i/e + Vp (2*4)
with a lifetime of 2.19703(4) x ID-6.5 Since one cannot 
detect neutrinos efficiently, the direction of the emitted



Table 2*1
Characteristics of the muon 
experiments at BHL.

beam used for the hydride

Target 7*5 x 1 x 1 cm3 Pt
P* ISO MeV/c

90 MeV/c

E> 33 MeV
Range 5.5 grams/cm2
Maximum Stopping Rate 2 x 103 fi*/ (cm2 -TP*)
Polarization 90 4
Macro-time Structure
Spill Length 1.0 B
Acceleration Length 2*2 b

Period 3.2 B

Background 0.5 %
e+ (detected/muon) 0.5

* TP Tera (1G12) Protons on Target
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positron must be measured in order to obtain the orienta­
tion of the muon spin at the time of decay. The angular 
distribution of the emitted positron is given by3

W(tf) - 1 + a cos(0) (2-5}
where 8 is the angle between the muon spin and the posi­
tron's direction and a is an asymmetry factor which equals 
1/3 if all energies of the emitted positrons are detected 
with equal probability (Fig. 2,1a), The value of one-third 
for a assumes that the polarization of the muon is 100% 
and that the solid angle subtended by each positron detec­
tor is not large. The value of a for the beam and detec­
tors used at BNL is 0.18 (Fig. 2.1b). One notices that the 
probability for emission along the direction of the muon 
spin is greater for a-1/3.

2 .2  PATA CQLLEQT1QU

The detector system along with shielding, collima- 
tion, Helmholtz pair, and cryostat for the **SR experiments 
is show in Fig. 2.2. The detectors consist of an organic 
scintillator optically coupled to a photomultiplier tube 
via a Plexiglas light guide (or optical fibers as used at 
KEK in Japan). The passage of a charged particle (i.e. 
muon or positron) through the scintillator excites the 
electrons in the organic molecules.6 A photon is emitted 
to allow the electron to return to a lower energy state. 
This photon is then transformed into an electrical pulse 
by the photomultiplier tube.



10

Figure 2.1a
The angular distribution of the emitted positron with 
respect to the muon spin. W(s) = 1 a*cosv with a-1/3.
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Figure 2.1b
The angular distribution of the emitted positron with 
respect to the muon spin, W ( j ) - 1 +■ a-cos? with a=o.lS.
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Incoming muons after passing through a variable 

thickness water degrader, placed inside the last quad- 
rupole magnet, and through collimators made of lead, 
brass, and copper (Fig. 2.2) are detected by a coincidence 
between detectors 1, 2 and M5 (12M5). Detection of muons 
which stop in the sample is achieved by a coincidence 
between 12M5F6, where the bar denotes an anticoincidence. 
This signal is used to start a clock. The backward-direc- 
tion positron detectors A3 and A4 have small holes in the 
center of them to allow the Incident muon beam to pass 
through without generating a signal in these detectors.
The forward-direction positron detectors F7 and FB also 
have holes for reasons of symmetry. An emitted positron is 
detected by a coincidence of 2A3A4F7F8 or 2A3A4F7F8 for a 
"forward" or "backward" positron. This signal stops the 
clock started by the incident muon. This time is converted 
into a voltage (or amplitude) by a TAC (time to amplitude 
converter) and is then input to a multichannel analyzer.
If a second muon should be detected before a time 
(10-20 jjs) after the detection of the first muon, then the 
clock is reset to zero with no output of the TAC being 
generated. Another instance where the clock must be reset 
is when no positron is detected. This 1b mainly due to the 
lack of positron detectors for e* decaying in the vertical 
directions (±*/2) and is seen in the ratio e+ detected per 
muon in Table 2.1. Therefore it is necessary to reset the 
clock after 10 to 20 microseconds. The signals going to
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the multichannel analyzer must be directed to the proper 
section for storage which is accomplished by a router box. 
The two spectra (backward and forward) in the multichannel 
analyzer are transferred to a computer, which is used for 
analysis and storage.

S.3 TEMPERATURE AMD MAGNETIC FIELD CONTROL
Several temperature control systems were used for 

these studies. For TiHj^gg with T < 300 K, this hydride 
compound was mounted in a 4He flow cryostat equipped with 
platinum and carbon-glass resistors and a gold-chromel 
thermocouple. For temperatures above 300 K, a heated-water 
circulating system with a platinum sensor was used. The 
temperature in both systems was determined by measuring 
the current through the resistor. The current was provided 
by a nine-volt battery. The studies of TiH^gj, TiHlig7, 
YH2 , and ZrH^g^ for T < 300 K were performed using an Air 
Products helium Displex closed-cycle refrigerator equipped 
with a platinum resistor and a gold-chrome 1 thermocouple. 
The same refrigerator was used for the low temperature 
measurements on LaH2 ( 0 5 and YH2 .7 7 , but was also equipped 
with a carbon-glass sensor. A constant-current source 
(Fig. 2.3) was connected to two of the four sensor leads. 
The resistance of these sensors was determined by measur­
ing the potential difference between the other two leads. 
For the investigations of TiHj^gj, TiH^.gy, and VHj. , 7 7 in 
the range 300 K to 600 K, an oven consisting of resistive
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wire (chromel-constantan) wrapped around an aluminum frame 
was used. A chromel-constantan thermocouple with an ice 
reference junction was used to measure the temperature.

The study of these hydride compounds necessitated the 
use of zero-, longitudinal-, and transveree-field /iSR mea­
surements. Zero-field fjSR requires that the fields perpen­
dicular and parallel to the initial muon spin be extremely 
small. This was accomplished by placing field shimming 
colls on each of the elx sides of the cryost&t. The con­
trol system for each coil consisted of a variable-voltage 
power supply and a circuit to regulate the current through 
the coil (Fig. 2.4). The current in each coll was adjusted 
to yield a magnetic field of less than 0,2 Gauss at the 
sample. The variance of the field across the sample was
0.05 Gauss or less. These field shimming coils were 
checked, and the current adjusted periodically over the 
typical four to six weeks of beam time. These coils were 
also used during the low longitudinal- and transverse- 
field experiments. The longitudinal field experiments were 
performed using a set of coils placed on two sides of the 
cryostat such as to produce a magnetic field parallel to 
the polarization of the beam. The coils were capable of 
producing a fourteen gauss field with an input of 50 
amperes. The transverse field was produced by a pair of 
coils with a six inch gap (Fig. 2.2). The nominal value 
for the field was 150 gauss. All field measurements were 
made using a Hall probe.
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Figure 2.4
The control circuit for a field shimming coil. The current 
through a shimming coil is provided by the voltage- 
regulated power supply . This current generates a 
potential difference across Rs (a piece of manganin wire, 
which has a small dR/dT) which is then compared to a 
reference voltage set by a potentiometer. This allows a 
constant current to flow through the field shimming coil.
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2.4 PREPARATION OF SAMPLES

A. Sample Cells
The metal hydrides used in the &SR studies were 

powders which necessitated the use of a sample cell to 
hold them. Each sample consisted of 2 0 to 30 grams of 
material. The cell used for the TiK1>99 sample consisted 
of aluminum foil wrapped around the powder. This was 
adequate for this sample, since titanium hydride is stable 
and the temperature range of the experiment did not cause 
the compound to outgas. For ZrH]^g4 and YH2 , the sample 
cell was a square aluminum frame of 0.7 cm thickness and 3 
cm on each side with mylar windows. The sample, after 
adding hydrogen, was loaded in the cell under vacuum. The 
sample cells for TiHi.8 3 , TiHl49 7 , YHii77 and LaH2t06 had 
stainless steel foil hard soldered onto a stainless steel 
ring of 1 cm thickness and 3 cm diameter. These samples 
were loaded under a helium gas atmosphere through a neck 
attached to the side of the stainless steel ring. This 
neck was internally threaded which allowed a stainless 
steel screw and a soft copper washer to seal this system. 
The helium gas allowed good thermal contact.

B- Samples
In the fabrication of a metal hydride sample, one 

starts with a pure metal and pure H2 gas. The distributors
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and the impurities of the materials used for the prepara­
tion of our samples are listed below. The lanthanum used 
in this study was obtained from the Materials Preparation 
Center at Ames Laboratory. The spark source mass spectrom- 
etric analysis of the lanthanum yielded the following 
major impurities at less than 20 atomic ppm: Al, F, Nb, Y, 
and Ce. No mention of the oxygen content was made. The 
titanium used was obtained from MRC Corporation and was of 
Vp grade (99.94% purity). The typical analysis of the 
material (which was an average over several lots} showed 
the following major impurities: oxygen at 600 ppm/weight 
and carbon, nitrogen, iron, and silicon at less than *75 
ppm/weight. The zirconium used was obtained from Alfa 
Products in the form of a 3N5 (99.951 purity) crystal bar. 
The typical analysis showed the following major im­
purities: iron at 12 0 ppm/weight, titanium and hafnium at 
75 ppm/weight, and oxygen, tantalum, niobium, and chromium 
at 50 ppm/weight. The yttrium used was obtained from 
Johnson Matthey in the form of a 4N (99.99% purity) ingot. 
The analysis of this material by the manufacturer yielded 
the following major impurities: lutetium at 50 ppm/weight 
and lanthanum and aluminum at 10 ppm/weight. The impurity 
levels of gases such as nitrogen and oxygen were not 
specified. The titanium and lanthanum were hydrided using 
H£ gas (99.999% purity) obtained from the Matheson Com­
pany. The purity of the H 2 gas used to hydride the zir­
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conium and yttrium metals was not specified by the sup­
plier.

The TlH^ and LaH2 ,g6 samples were prepared by J. J. 
Reilly under the following procedure. The metals were 
heated to 57 3 K under vacuum and allowed to outgas to 
clean their surfaces. At this point, H 2 gas was intro­
duced. If no hydrogen was absorbed, the metal was heated 
to about 700 K and maintained until absorbtion took place. 
The change in the hydrogen pressure during the reaction 
allowed a crude determination of the hydrogen concentra­
tion in the sample. Upon completion, the samples were 
allowed to cool to room temperature and then removed from 
the furnace. After the sample cooled, a small amount of 
the material was taken for hydrogen analysis by thermal 
decomposition. This method determines the hydrogen con­
centration to within an accuracy of one percent by measur­
ing the pressure change in a small volume from the outgas- 
ing of hydrogen.

The ZrHl i 9 4 end YH2 samples were prepared by E, F. W. 
Seymour in the following manner. Initially the hydriding 
system was evacuated. After evacuation, the system was 
filled with hydrogen to a pressure of approximately one 
atmosphere as measured by a mercury manometer to within an 
accuracy of one percent. After this, the hydrogen inlet 
valve was closed, and the valva at the top of the furnace 
was opened. Using this furnace, the sample was heated to 
several hundred degrees Celsius while monitoring the
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hydrogen pressure in the system. After a sufficient pres­
sure change, the sample was allowed to cool to room tem­
perature . The hydrogen content of the sample was calcu­
lated from the difference between initial and final read­
ings of the manometer. To reduce the error in pressure 
readings due to the finite volume between the valve on the 
furnace and the sample, a one liter reservoir was incor­
porated into the system. The hydriding system was also 
equipped with a titanium sponge. This element acts to 
purify the hydrogen by absorbing the gas from the cylinder 
of - This sponge is then gently heated to give a pure 
source of hydrogen. This method is a standard trick in the 
field of hydrogen alloying to achieve high purity H2 , but 
the purity of this particular system has not been deter­
mined by E. F. W. Seymour. It should be mentioned that 
this system has been used to hydride samples for NMR work 
and has not yielded a problem due to impurities arising 
from the H2 gas or titanium sponge.

yttrium dihydrlde is unstable at room temperature 
under atmospheric conditions. The hydrogen concentration 
of the sample is reduced by the formation of water vapor. 
During the transfer of YH2 from one sample cell to 
another, the hydride was accidentally exposed to the 
atmosphere. The concentration of this sample was then 
checked by thermal decomposition and found to have a H/Y 
ration of 1.77, No impurities were expected to have been 
added during this period of exposure.



CHAPTER 3
INTERACTIONS OF THE MUON WITH THE LATTICE

In the first chapter, the large magnetic moment of 
the muon was stated to be advantageous. This allows inter­
nal fields and spin dynamics of the host to be measured 
and the site of occupation for the muon to be determined. 
These measurements or determinations Involve magnetic, 
electronic and elastic interactions with the lattice. 
However, one must ask the question whether the muon with a 
momentum of 100 MeV/c affects the lattice and the quantity 
being measured.

In this chapter, we will first explore the effects of 
thermalization of the muon on itself and the lattice. Upon 
examining this, the three interactions listed above will 
be discussed.

3.1 THEKHALIZATION7
For jiSR to be considered a differential technique, 

the muon must have a kinetic energy of the order of kT.
The thermalization of a high energy muon (-40 HeV) raises 
two (and possibly more) questions,
i. Is the muon still polarized after it thermalizes?

22
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11. Does the muon damage the lattice during thermaliza­

tion? If so, is the information collected a represen­
tative of an undamaged lattice?
Let us consider the first question. The kinetic 

energy of the incoming muon is significantly higher than 
the energy of the lattice (kT~0.04 eV), The loss of this
energy occurs via inelastic scattering with electrons
until the muon energy reaches 2-3 keV, This process hap­
pens in 1Q"9-10"10 seconds. At this point in nonmetals, 
electron capture and loss by the muon occurs reducing its 
energy to approximately 200 eV in a matter of 5 * 10“13 
seconds. The muon-electron system, known as muonium, 
becomes stable at this point. Following this, the muonium 
loses energy by inelastic collisions with atoms in the 
lattice. In metallic systems (including metal hydrides) 
the muonlum state is not stable due to screening by the 
large number of conduction electrons. Therefore, the muon 
continues to lose energy via inelastic electron scattering 
until it thermalizes with the lattice.

Let us consider the effect of thermalIzation upon the 
polarization of the muon. The muon-electron scattering 
should be the dominant depolarization mechanism. Ford and 
Mullin8 have calculated the cross section for scattering 
of longitudinally polarized muons on unpolarized electrons 
and discovered that the depolarization is proportional to 
the fractional energy loss, U.
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(3.1)

where 6 -v/c and «- center of momentum scattering angle.
The constant of proportionality between the depolarization 
and U is Bame/m^ which means that the depolarization due 
to electrons for a 90 MeV/c muon (U < 0.003) is negligi­
ble.® Since the loss of polarization due to coulomb scat­
tering is of the same order or less,® the loss of polar­
ization due to thermalization is insignificant.

The final question to consider is the damage to the 
lattice by the muon and the effect upon the Information 
gathered. During thermalization, the muon ionizes and 
displaces host atoms. The creation of these defects must 
be a concern since their presence does not reflect the 
natural state of the material. There is a threshold energy 
for vacancy creation meaning that the atom displacements 
do not occur during the last part of the muon's path, 
Brice9 has calculated the range of the muon past the last 
displaced atom for various materials assuming a sharp 
threshold energy Eg (Fig. 3.1). One sees that the muon 
continues a considerable distance past the displaced 
atoms. The chance that the muon diffuses back to the 
damaged region is extremely small, as is the chance that a 
second muon finds the damaged region before the annealing 
out of the defects. One can conclude that the thermaliza­
tion does not affect the polarization of the muon or the 
quantities measured.



25

Nb

u
oui.

Ptl0 J O

D I S P L A C E M E h r  l h f l E S - H O L O  L f < L R G l f  E ( e v j■a

Figure 3-1 (Brice9)
Excess projected range for the muon as a function of 
displacement energy for positive muons incident on various 
materials.
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3.2 MAGNETIC INTERACTION

A. Spin Precession1 0

The large magnetic moment of the muon makes it useful 
for studying magnetic ordering, Knight shifts, spin glass 
behavior and many other topics which involve the internal 
fields of the sample. Classically, the magnetic moment is 
due to a body of charge spinning around an axis with its 
magnitude proportional to this current. Since the charge 
for the muon is positive, the angular momentum, J, and the 
magnetic moment, *j, lie along the same axis. Therefore:

The gyromagnetic ratio, 7 , for a muon is 85.16 kHz/G. The 
equation of motion for a magnetic moment in a constant 
magnetic field, H0 , with no damping is

(3.2)

(3.3)

or alternatively

(3.4)

This equation states that the time rate of change of the 
direction of the magnetic moment is proportional to the 
field and is perpendicular to ~H and This is graphical-
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ly depicted in Fig. 3.2. In this figure, the magnetic 
field lies on the z-axis and the magnetic moment Is a 
vector with components Osinflcoe<£, *jsin#sin^, ^c o b s ) , 
Solving this equation, one finds

6 « Constant (3-5)

and ^  ■ ^h0  » (3.6)

The motion of the spin is uniform around the axis of the 
magnetic field with the z component of jl remaining con­
stant. This motion is know as Larmor precession. The 
magnetic moment vector may be written

£ - (/icoafu^ t) sinS , *iain(uL t) sintf , pcoss), (3.7)

If a frictional force is present, the moment will have a 
spiral motion until it aligns with the field. The rate of 
change for the z-component of the magnetic moment is 
governed by the friction in the system.

Let us consider the quantum mechanical picture of the 
same system. Since the muon is a quantum mechanical par­
ticle, the rotating charge is actually intrinsic angular 
momentum, otherwise know as spin. For a single spin 1 in 
an external field oriented along the z-direction, the 
Hamiltonian is



Figure 2.2 (Volino10)
The precession of the muon magnetic moment, ^ , in an 
external field £0 .
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(3.8)

The 21+1 eigenstates of H z are those labelled by the 
quantum number ra and have an energy spacing of atH 0 -Aul , 
where is the classical precession frequency.

Let us proceed to find the expectation value of the
different components of J , Initially, we pick a state 
which is a superposition of the eigenstates of the Zeeman 
Hamiltonian

| it (0) > “ am |m> 
where £ra |aK | 2 - 1

In the Schrodinger representation

[*(t)> - Ejn am expt-iE^t/A) |m>. (3.11)

The time dependent expectation value of a physical quan­
tity for this representation is

<U(t)> - < * (t)|U|*(t)>. (3*12)

Thus the expectation value of jjy(t) is

(3-9)
(3.10)

<JJy(t)> = <¥ (t) |^y|* (t) > (3.13a)
= 1 ^? ̂ in^m1 ekp (“i (E^—Em i ) t/fi ) <m' | Iy | m> . (3 .13b)
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The quantity <m'|Iyjm> is zero unless m-m'** ±1. Thus, 
(Ejj-Eju*)/* ■ ±ljl . Restricting ourselves to spin 1/2 par­
ticles (i.e. muon), the matrix element can be rewritten as

<-i|Iyl*> - - -<l/2i)<!|I+|-l> (3.14)
■1/2 i . (3.15)

Assuming <m'|I± |m> - [I(1+1)-m(m±l)]* ,m±l (3.16)
Eqn. 3.13 may now be rewritten as

<^y (t)> - h-t/(2i) (a$a_j s-wLt " c.c.) (3.17)

where c.c. is the complex conjugate of the first term. If 
the coefficients aj and n_j are chosen such that

a} - (3 .18)
a_i« c2e itf (3.19)
where cj + cj ■ 1, (3.20)

this gives
<^y(t)> » ft7 C1 C2 sin(^-s+^lt). (3.21)

similarly
<fjx (t)> ■ fi7 C1 C2 COS +cjl t) (3.22)
<^z (t)> - fi7 (a2 - b 2 ) / 2  0-23)

These expressions show that the z component of j] is a con­
stant and that the x and y components oscillate at a fre­
quency equal to the Larmor frequency. This is what was
found in the classical picture.
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B. Origins of Magnetic Field at the Site of the Muon 4 

In the previous section, the precession of the muon 
spin in a magnetic field was introduced. In this section, 
the various magnetic fields at the site of the muon will 
be examined. The magnetic field at the site of the muon,

, can be written {Fig. 3.3) as

■ 6ext + &hf + Bdem + + ®dip (3*24)

SeKt arises from sources external to the sample. The 
magnetic fields arising from the magnetization of the 
sample can be described by a Lorentz sphere around the 
muon. This tool separates the sample into two regions. 
Inside the sphere, the sources of the fields are treated 
microscopically; while outside the sphere, they are 
treated in a continuum limit. — (4*/3)ft, the Lorentz 
cavity field, is the field inside an empty sphere in a 
medium of uniform magnetization R. * -Nft is the shape
dependent demagnetization field. The shape of the sample 
is incorporated via the constant, N (see reference 1 0 ). 
Bdip the magnetic field due to nuclear dipoles inside 
the Lorentz sphere. B^f is the hyperfine field due to the 
polarization of the electrons surrounding the muon. The 
Pauli paramagnetic susceptibility of conduction electrons 
is given by 1 2

(3.25)
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Figure 3.3 (Schenck4)
Macroscopic magnetic field inside a magnetized ellipsoidal 
sample in an external field applied parallel to the long 
axis of the ellipsoid. M is the magnetization. (Bdem^
and Bl are the demagnetization and Lorentz cavity fields, 
respectively. The static component of the individual 
magnetic moments induced by the field are denoted by the 
small arrows, Mot shown is the hyperfine field B^f*
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where H, k and TF are the number of conduction elec­
trons, the Bohr magneton, the Boltzmann constant and the 
Fermi temperature, respectively. The presence of the muon 
may enhance the susceptibility of the conduction electrons 
by a factor of ten.

For diamagnetic materials, Bfjf, and B^em can be
neglected since they are two to three orders of magnitude
less than Bflxt (~150 G) - Therefore, an<* ®dip are t3ie
only fields which contribute for the studies presented.
The effects of dipolar field upon the muon spin will be 
discussed in more detail in the next section.

C. Dipolar Interaction10
The classical interaction between two magnetic dipole 

moments ^  (-yftl!) and £ 2  (7 *^2 ) can k® written as

Hdd “ 1/r3 It* 1 * ? 2 “ 3( m i  ' ( £ 2  * r) 1 (3.26)

A _where r is the vector between the two dipoles (and r-r/r). 
Working in spherical coordinates, this Hamiltonian can be 
rewritten as

Hdd " «2n i 2 / r 3 [A + B +  C + D +  E + F] (3.27)
where

A “ IlZI2z(1 " 3cos2*J (3.26)
B - -1/2 [ I ̂ 12 + 1 II2 K I  “ 3cos2tf) (3.29)
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C « d* - ~ 3 / 2 [ l \ l 2z + Ilzl2]ain(cosfle_i  ̂

E - F* - -l / A l i l 2 B i n 29^~2±*

This Hamiltonian may also be written as

(3.30)
(3.31}

Hdd "■ "^1 ■ Rd (3 .32)

where is the field produced by a second dipole 
(nucleus). For most nuclei, this field is on the order of 
a couple gauss. A distribution of dipolar fields at crys- 
tallographically equivalent sites arises from averaging 
over the lattice locations and spin orientations of the 
remaining nuclei. This range of fields gives rise to a 
distribution of Larmor frequencies as shown in Fig. 3.4 
which is characterized by a quantity known as the line 
width. Determination of this distribution gives informa­
tion about the muon position and the orientation of the 
local spins. This Hamiltonian will be used to calculate 
the Gaussian line width in the Zeeman and quadrupolar 
limits in chapter 5.

3-3 ELECTRONIC INTERACTION
In the previous section, the magnetic interaction of 

muons was emphasized. This interaction is usually the 
"star of the show” in the data analysis while the electro­
nic effects are often swept under the rug. However, *iSR 
can measure or observe many electronic effects: the sites 
available for muon occupation, elastic forces and lattice
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Figure 3.4 (Volino10)
Distribution of energy levels due to the dipolar interac­
tion. The figure also shows the difference in energy 
levels due to the Zeeman interaction.
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expansions around the muon, the electric field gradient at 
neighboring nuclei due to the muon and its screening 
cloud, Knight shifts (which are a measure of the polariza­
tion of the local electrons due to an external field) and 
the magnetic hyperfine fields in ordered materials from 
the polarization of the local electrons (which are coupled 
by exchange forces to the local magnetic moments). This 
section will begin with a discussion of selection of sites 
for muon occupation followed by a discourse on elastic 
forces and lattice expansions. This will be followed by a 
discussion on the interaction of nuclear quadrupole mo­
ments with the electric field gradient produced by the 
muon. The effects due to the polarization of the local 
electrons by external fields or local magnetic moments 
will not be discussed here. The reader is referred to 
reference 4 for a treatment of these topics.

A. Selection of Sites for Occupation
The electronic Interaction is an integral part of the 

site selection process. The potential for the lattice may 
be viewed as a superposition of potentials from the atomic 
cores. In metals, the conduction electrons are free to 
adjust themselves when a perturbation, such as muon's 
charge, is present. This superposition of potentials gives 
rise to potential minima for positive particles. These 
minima are Know as octahedral (0) and tetrahedral (T) 
Interstitial sites. For the case of a Face Centered Cubic
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(FCC) lattice, there exist two T sites and one O site for 
each unit cell (Fig, 3.5), The interstitial sites of oc­
tahedral symmetry in a FCC lattice form a FCC lattice of 
their own. This lattice of interstitial 0 sites is dis­
placed by a/2 (a-lattice constant) along a (100) direc­
tion. The interstitial sites of tetrahedral symmetry in a 
FCC fora a simple cubic (SC) lattice of their own. This 
lattice is displaced by a/3/4 along the diagonal of the 
cube. The hydrogens, in the dihydride phase of this study, 
occupy the majority of these T sites. They form either a 
simple cubic or a distorted sc lattice. If the hydrogens 
occupy T sites, one can add the potentials for a SC and 
FCC lattice to obtain a first-order picture of what the 
muon seee in terms of a charge density. Fig, 3.6 is the 
charge density for the lit) direction of (6-La)1*, a typi­
cal FCC lattice. The four tetrahedral sites in this figure 
are located at x-1/4 and 3/4 and y-l//S and 3/78 posi­
tions. The octahedral sites are located along x-1/2 line 
for y- 0, 1/72, and 72, The presence of the hydrogen atoms 
and the muon will perturb the charge density, but Fig. 3.6 
serves merely to demonstrate the symmetry of the intersti­
tial sites for Fcc lattices.

5. Screening
In the section on magnetic fields, it was mentioned 

that the muon has a screening cloud around it. The mean 
radius of this screening cloud ra for a free electron gas
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a)

' X

b)

Figure 3.5a-b [Schroeder13)
Interstitial sites (closed circles) in FCC lattices (open 
circles), a.) interstitial sites of octahedral symmetry 
(0 sites). b.) interstitial sites of tetrahedral symmetry 
(T sites).
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Figure 3.6 (Lu14)
Contour plot of the charge density of ft-La, a typical FCC 
lattice, in the (110) plane.
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is dependent upon the density of electrons at the Fermi

which yields a value of approximately one angstrom for 
this radius. This means that most of the screening occurs 
for distances less than the muon nearest-neighbor length. 
However, this perturbation does cause RKKY-oscillations of 
charge and spin densities over a couple lattice constants.

Since muonlum has not been found in metals, the pos­
sibility that two electrons of opposite spin states bind
to the muon, like H” , has been considered by many theo­
rists. Jena et al.15 have used a jellium model, where a 
uniform positive background is substituted for the period­
icity of the positive metal atoms to calculate normalized 
charge density n(r)/nQ and spin density enhancement curves 
for free electrons as a function of distance from a muon
as shown in Fig. 3,7,

surface n0 (Ef) and is3

(3.33)

For most metals, n0 (Ej) is in the range 1022 - 1023 cm"3

fj « {nit (r) - nil (r) }/ (n0it - n0 i) ( 3 . 3 4 )

These curves were calculated in the Hohenberg-Kohn-Sham 
formalism which involves solving for the local wavefunc- 
tion and potential self-consistently.15 Jena et al.15
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found that the potential for metals would allow for bound 
states, but that the binding energies for the muonium 
state would be smaller than the electron-electron interac­
tions.

C . Elastic Forces
Elasticity of materials is characterized by a linear 

restoring force with the provision that the elastic limit 
of the material is not exceeded. This is often associated 
with a child's happiness with a spring and is not a 
stranger to most people. Lattices also possess this same 
characteristic. For the muon, there is "pushing" and 
"shoving" between it and the lattice.

Teichler16 has considered the problem of local lat­
tice distortions in copper for an octahedral interstitial 
muon screened by conduction electrons. Using the potential 
V(R-Ri) shown in Fig. 3.8 (which includes terms for inter­
actions between at position R and a Cu+ ion at position 

and interactions between the screening electrons and 
each positive ion (fj+ and Cu+ ) ), he calculates the cou­
pling strength g with the copper neighbors.

gfR-Ri) - - VR  ̂ Jd3r |*^(r-R>|2V(r-R!) (3.35)

Using a potential energy U{R) for an unrelaxed FCC lattice 
of fourteen shells of cu+ ions around an octahedral inter­
stitial site, the muon wave function was estimated. The
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Figure 3.7 (Jena et al,15}
Charge- and spin-density distribution around a positive 
muon in a spin-polarized electron gas with r3 - 2 aQ and 
(nQit - n0 J>)/(n0 i + nQii)“0.17. The dashed and solid curves 
represent the normalized spin density and normalized 
charge density, respectively.



43

r 20

Ff Fcr.u, ] -

Figure 3,8 (Teichler16)
Interaction potential V(R) between positive point charges 
and Cu+ iona in Cu metal.
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results for this calculation are shown in Table 3.1 along 
with the results for other isotopes of hydrogen. Included 
in this table is the harmonic oscillator frequency for 
U(R). Teichler has used the coupling strength g to obtain 
radial static distortions 6u around the muon in the har­
monic oscillator approximation using the "lattice response 
function” of copper.16 The deformation energy (polaron 
binding energy), E0 , reported is a measure of the decrease 
in muon energy due to the relaxation of the copper

TABLE 3.I16
Energy levels, lattice coupling, lattice distortion, and 
lattice relaxation energy for polaronic motion of proton 
isotopes in copper.

ftwfmeV) svt/ (a/21 Eo.^V)
356 2.0 0.03 90

p 120 1.34 0 . 02 40
d 84.5 1.27 0 . 02 36
t 69 1.23 0.02 34

lattice. These calculations agree with the ^SR experiments 
of Camani et al.17 and show that a muon distorts the local 
lattice more than a proton.

D. Quadrupolar interaction10
For nuclei with spin greater than 1/2, the distribu­

tion of positive charge is not spherical. This nonspheri- 
cal nature gives rise to an interaction with the elec-
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tronie cloud produced by the muon. This distribution may 
be developed using the method of moments, since the Wig- 
ner-Eckart theorem requires the expectation value of the
electric dipole moment to vanish as a consequence of time
reversal invariance, the first nonzero moment is the 
electric quadrupole.10 The electric quadrupole moment, Q, 
for a spherical charge distribution, i.e. spin-0 or -1/2 
nuclei, is zero.10 This interaction can be expressed as a 
function of the electric quadrupole moment second rank 
tensor of the nucleus Q^b and the electric field gradient 
(e.f.g.) second rank tensor at the nucleus site due to the 
electronic cloud vafi due to the presence of the positive 
muon.4

H q - 1/6 (3.3 6)
Where QgB - eQ/( 61(21 - l))[3(Ia Ia + IflIa )/2 +

-fiflBI(I + 1)] (3.37)
v ^b is a function of the distance between the nuclei and 
the electronic cloud.
3.4 SUMMARY

The different interactions between the muon and the 
lattice have been presented in this chapter. The ther­
mal lzation of the muon was shown not to affect its polar­
ization or the quantities measured. Secondly, it was shown 
that the magnetic interaction is responsible for the 
precession of the muon's spin and the distribution of 
dipolar fields. Further, the electronic interaction was



shown to account for the selection of sites for muon 
occupancy, the electron cloud around the muon, the distor­
tion of the lattice in the vicinity of the muon, and the 
interaction of the electric field gradient and the nuclear 
guadrupole moment. The relevance of these Interactions to 
the different f*SR techniques will be discussed in chapter



CHAPTER 4 
MUON DIFFUSION

Hydrogen isotopes (including the muon) have large 
mobilities in metals. At room temperature and below, the 
mobility of hydrogen is several orders of magnitude higher 
than any other interstitial atom. The question as to why 
this is true has stimulated the experimental and theoreti­
cal study of the diffusion mechanism. Due to the light 
mass of hydrogen isotopes, a quantum mechanical picture is 
often necessary to describe their motion, The large dif­
ference in mass ratios of the four hydrogen isotopes 
(muon, hydrogen, deuterium and tritium) allows a wide 
range of effects to be studied which is beneficial in 
differentiating between different diffusion mechanisms.

The diffusion of light interstitial particles can be 
described by one of four mechanisms (Fig. 4.1), The tem­
perature of the lattice determines which mechanism is 
dominant. One should emphasize that these divisions are a 
simplified view of reality and that the boundaries which 
separate these processes are not necessarily sharp and may 
allow for overlap. At low temperatures, the interstitial 
particle is delocalized into a band state if it is not 
trapped by lattice defects. This motion is limited by

47
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Figure 4.1 (Kehr19)
Diffusion mechanisms for light interstitials as a function 
of temperature.
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scattering with thermal phonons and lattice defects {and 
electrons in metals} . For higher temperatures, the inter­
stitial particle is self-trapped by the relaxation of the 
lattice around it. The particle and the distortion are 
known as a polaron. The particle is able to move to a 
crystallographically equivalent site when two or more 
phonons equalize the energies of the two sites. The 
restriction that the tunneling process between crystal- 
lographically equivalent sites not be a one-phonon process 
is imposed by conservation of momentum. This process is 
known as thermally-activated tunneling. The third mecha­
nism is known as thermally-activated jumping and is char­
acterized by a higher activation energy since the particle 
must overcome a potential barrier. This process usually 
dominates over tunneling at high temperatures. The fourth 
process which occurs is "fluid-like diffusion" where the 
particle is mainly in states above the potential barriers. 
Diffusion in this state is limited by collisions generated 
by the thermal fluctuations in the lattice. In this chap­
ter, the thermally-activated diffusion processes will be 
discussed.

4.1 THERMALLY-ACTIVATED TUNNELING4 '19 >2 0
Fig. 4.2 shows a schematic of the process of ther­

mally-activated quantum tunneling. Initially the particle 
is self-trapped due to the relaxation of the lattice 
around the interstitial. Thermal fluctuations bring the
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la f 1C

Figure 4.2 (Kehr19)
Thermally-activated tunneling of a light interstitial, a.) 
The lattice is relaxed around the interstitial on the left 
side allowing the interstitial to have a lower energy, b.) 
Thermal fluctuations in the lattice have equalized the 
height of the levels in the two wells allowing a tunneling 
process to occur, c.) The lattice is relaxed around the 
new position of the interstitial.
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two levels to the game energy. The particle is able to 
tunnel through the barrier with a tunneling matrix element 
J. After tunneling, the lattice relaxes around the new 
site of the interstitial particle. According to the "Gol­
den Rule", one expects the transition rate r to a neigh­
boring interstitial site to be of the form

r - J2exp(-Ea/kT), (4.1)

An excellent starting point for small-polaron hopping 
theory is to consider the tunneling matrix element as a 
perturbation of the Hamiltonian. In the evaluation of jump 
rates, the following assumptions are usually made in 
small-palaron theory:
i) The interstitial particle responds to the host atoms 

adiabatically. This is a valid assumption as long as 
local mode frequencies of the muon are much greater 
than the Debye frequency of the host.

ii) The coupling between the particle and a host atom is 
linear which means that the interaction energy is 
proportional to the displacement of the host atom. 
This allows the vibration spectra to be unaffected by 
the distortion.

iii) The localized interstitial is associated with the 
unperturbed initial and final states. This allows the 
tunneling matrix element J to be viewed as a pertur-
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bation. This is valid, because the lattice relaxation 
energy is much greater than J.

iv) The lattice potentials can be treated in the harmonic 
approximation,

v) The tunneling matrix element J is independent of the 
changes induced by the phonons, This is called the 
Condon approximation and allows the change in thB 
barrier height due to the phonons to be neglected.

The use of the last assumption is sometimes questioned. 
This will explored in more detail at the end of this 
section.

If transitions between sites are not allowed, then 
the localized states of the particle are eigenstates of 
the Hamiltonian. The tunneling matrix element produces 
transitions between these eigenstates and can be treated 
by a time-dependent perturbation theory. If the particle 
starts in site p with the lattice relaxed around it, then 
ths probability for a transition to site p ’ with the 
lattice relaxed around it is

rp p t - 2*/h |<pa |H|«’p«>j2S (Epa - Ep »a t) (4.2)

where a and « ’ are quantum numbers for the initial and 
final states, respectively. After summing over initial and 
final states and over the phonon states, the following 
results are obtained. For T > 0&,19



S3

(4.3)

This transition rats Includes processes involving two or 
more phonons. For T « only two-phonon processes are

where fiuD -
Ea is a measure of the energy to equalize the energy 
levels in the two wells (Fig. 4.2) and is equal to the 
relaxation energy (polaron binding energy) E0 (Section 
3.3C) divided by two.

The tunneling matrix element, J ( is introduced to 
allow delocalization of the particle over several sites. 
Frequently, the host atoms are considered to be fixed at 
their equilibrium positions. This is a reasonable ap­
proximation since the mass ratio between the host metal 
atom and interstitial particle is usually large. The 
potential produced by the host atoms may be replaced with 
a periodic one, such as a cosine function, which allows 
the calculation of band states. Since the bands are narrow 
for particles such as the muon, the wave functions are 
strongly localized. Thus, only transition matrix elements 
to the neighboring sites need to be considered. An order 
of magnitude estimate for J can be obtained by placing the 
light interstitial in a periodic one-dimensional potential

expected. Hence,19



54
and calculating the energy splitting between the lowest 
(symmetric) and the first excited (antisymmetric) states. 
The wave function for a state is often a linear combina­
tion of harmonic oscillator wave functions. If the poten­
tial is

V(x) - (V0/3)cos(2*x/d), (4.5)

where d is the spacing between wells and V0 is a barrier 
height, then the frequency of oscillation within the well 
is

u2 - (j*)2V0/(2md)2 . (4.6)

with this formula, one has the choice of calculating a 
barrier height from an experimentally determined vibration 
frequency or a vibration frequency from a measured barrier 
height, such as an activation energy.19 If the well is 
deep (VG Au) r then an order of magnitude estimate for 
the tunneling matrix element is given by the Hathieu 
formula.

The Condon approximation has been found to be a 
severe restriction in some cases. If the motion of the

(4.7)
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interstitial involves a path which passes between two host 
atoms, these atoms must be displaced from their positions 
for the transition to occur. Since the distortion of the 
host lattice In this matter is not considered as part of 
the ground state, then the expression for the transition 
rate must be changed.

rPP’<T) ‘ W'tE.E.) H-8)

The elastic energy E s is the energy necessary to distort 
the lattice. This means that the Condon approximation is 
not valid since the phonons, necessary to distort the 
lattice, severely affect the barrier height. The elastic 
energy Efl has been found to contribute significantly for 
jumps between 0 sites in FCC metals and T sites in BCC 
metals, but not T sites in FCC metals.

4.2 THERMALLY-ACTIVATED JUMPING12
Diffusion is characterized by a net flux of vacancies 

or particles through a solid. This net flux is often 
driven by a concentration gradient of vacancies or par­
ticles trying to distribute themselves uniformly in the 
solid. This phenomena is expressed by Pick's law for a 
concentration of N particles.

- -D v N <4.9)
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The net flux la the number of atoms crossing a unit 
area in a unit time. The constant D is the diffusion 
constant. The direction of the diffusion is away from 
areas of high concentration, but may also be driven by the 
gradient of the chemical potential (which has not been 
Included in Egn. 4.9),

For a particle to diffuse in the classical sense, the 
potential energy barriers imposed by the nearest-neighbor 
atoms must be overcome. The height of this barrier is 
Indirectly determined by the mass of the particle. The 
potential well can be approximated by a harmonic oscil­
lator potential. This means that the energy level spacing 
is proportional to 1/Jm with the lowest level occurring at 
(3/2)rtyk/m above the bottom of the well. For a particle in 
a well with a barrier height E, the fraction of time in 
which the interstitial will have enough energy to pass 
over the barrier is proportional to exp(-E/kT). This 
fraction reflects the general phonon spectrum in the 
lattice with the higher energy portion of this spectrum 
increasing in number as a function of increasing tempera­
ture. If the frequency of vibration in the potential well 
is v t then the probability for the particle to escape from 
the well is

p - i/exp(-E/kT) . (4.10)
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This probability is also Known as the jump frequency- The 
frequency of vibration is proportional to 1/,/m.

Let us consider two parallel planes, with occupied 
interstitial sites, separated by lattice constant a- If 
there are S interstitial particles in one plane and 
S + adS/dx on the other, then the net number of atoms to 
diffuse between the planes per unit time is roughly 
-padS/dx. If the concentration of interstitial particles 
is M, then the number per unit area is S-aH.
The diffusion flux is then

Using Eqns. 4-9, 4.10 and 4.11, one finds an expression 
for the diffusion coefficient.

In lattices where there are an extremely largo number 
of interstitials, the diffusion constant will be reduced
by a factor proportional to the percentage of vacant
interstitial sites. This is known as a blocking factor and 
is commonly observed for protons in metal hydride systems 
such as TiHx .21

It has been shown that the prefactor and the activa­
tion energy are inversely proportional to the square root
of the mass of the interstitial particle. However, this

Jn “ -pa2 (dN/dx)l (4*11)

D - t'a^expf-E/kT) (4.12)
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simplistic model is not a description of the true state of 
affairs. In reality, the anharmonic shape of the wells and 
the motion of the lattice atoms must be considered in the 
characterization of a diffusion constant.



CHAPTER 5 
ti SR TECHNIQUES

For several years after the discovery of the parity 
violating weak decay of the muon, the only >iSR technique 
used was transverse-field muon spin rotation. In the late 
70s, zero- and longitudinal-field muon spin relaxation 
were developed at TRItJMF.22 The invention of these techni­
ques was beneficial to the study of internal fields in 
materials. Several other techniques, such as muon spin 
resonance23 and level crossing resonance (LCR)24 have 
since been added to the variety of jiSR methods. Muon spin 
resonance can be used to study hyperfine fields and the 
time dependence of local fields.23 LCR is useful in the 
study of nuclear hyperfine structure in paramagnetic spin 
systems.24 This chapter is devoted to the discussion of 
transverse-, zero- and low longitudinal-field juSR techni­
ques used in the present study of metal hydride systems,

5.1 TRANSVERSE-FIELD TECHNIQUE
The number of positrons resulting from the decay of 

the muon is given by an exponential law for decay of a 
radioactive particle.7
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N(t) - N0 OXp(-t/r^}
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(5.1)

If the magnetic field is perpendicular to the spin, then 
the muon moment will preceas at the Larmor frequency as 
mentioned previously. This means that the distribution of 
the emitted positrons will process. Eqn. 2.6 is now 
rewritten as

W(0,t) « l + acos(ut + ^). (5-2)

Grouping together these two equations, one has

N(t} " N0 expf-t/r^)(1 + acOSfwt + ^)). (5.3)

Often a term to compensate for accidental events arising
from uncorrelated start and stop signals is added to this 
expression. This term is known as the background term and 
may or may not be time Independent. The frequency u is 
proportional to the average field at the site of the muon. 
This field has a finite width due to the dipolar interac­
tion in the material as mentioned in the section on 
dipolar interactions. This distribution of fields leads to 
a dephasing of the ensemble of muon spins which damps the 
t*SR signal. In other words the probability for preferen­
tial decay along the muon spin decreases for the ensemble. 
This dephasing of the ensemble of muon spins is incor­
porated into the formula for fitting with a term know as
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the relaxation function, Gx (t). The formula describing the 
spectrum (Fig. 5.1) is now written

N (t) *NoexP ) (l+aGx (t) cos («t + ^)) + Bkgd. (5.4)

For the case of static fields (no muon motion or host 
spin relaxation), the width of the field is usually ap­
proximated by a continuous and isotropic Gaussian dis­
tribution; 7

where M 2 is the second moment of the field distribution. 
The relaxation function may be found by a fourier trans­
form of the field distribution. The relaxation function 
for Eqn. 5.5 is a Gaussian distribution.

From this expression, one may obtain a line width a which 
equals Ax/y2. when the field distribution is not Gaussian, 
then Gx (t) will take on other forms. I will return to this 
later in this section. But first let us explore the 
development or calculation of M j .

The second moment is proportional to the second 
derivative of Gx (t)at time t«0.

P(BX) - (2>iM2r * e x p ( - { ^ B y ) 2/2M2 ) (5.5)

Gy(t) - exp(-a£t2/2) (5.6)
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A typical ;jSR transverse-field histogram (spectrum)
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t«0
(5.7)

The relaxation function is defined:

(5.B)

where a K is the Pauli spin operator and the brackets refer 
to an average over all nuclear states. If we have an 
applied field In some direction with no quadrupole inter­
action, then this direction can be taken as the axis of 
quantization. Gx {t) can be rewritten as

Gx (t> ■ <exp(iHt/ft) t7X (0) exp (-iHt/A ) £JX (0) > (5.9)

Since the trace possess cyclical invariance, the expres­
sion for the second moment is

The approximate eigenstates of the system are those of the 
Zeeman Hamiltonian, The muon and proton operators commute 
leaving term A of Eqn. 3.27 (the secular Hamiltonian) as 
the only term in the Hamiltonian

where H ** Hzeeman + ^dd* (5.10)

K 2 - <[H,«X 3 [Hfa K ]>/h2 (5.11)

Hdd - - 3cos2fl ) /r^ (5.12)
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where the summation is over all nuclei. Upon calculating 
the commutators and talcing the trace over the states, one 
obtains4

m2 “ IN {IN+l)/3 [Zj (1 - 3cos2flj)2/ ^ ]  (5.13)

This is commonly known as the Van Vleck formula. For a 
polycrystalline sample, integration over all angles gives

M2 -  4 / 1 5 ^ ; ? a 2 I N * 1 * * 1 ) [ £ j  V r f ]  ■ ( 5 . 1 4 )

For nuclei with I>i and possessing a significant 
quadrupole moment,Q, a quadrupolar term must be added to 
the Hamiltonian. If the external field is not large enough 
to achieve the Zeeman limit, then the approximate energy 
eigenvalues for the system are

Hq | I K I n z > -  e 2 Q / [ 4 I H ( 2 I N -  m t l N z  “

IH (IN + 1)/3>|IN IKZ> (5.15)

where Ij* and Ijjz are quantum numbers for the nuclear spin. 
The quantization axis for the system is along the muon-to- 
nucleus vector, since the eigenstates are different, then 
fewer terms in the dipolar Hamiltonian will average to 
zero. For the case of half-integer spin nuclei assuming a 
radially directed EFG from the muon, the second moment for 
a polycrystallina is written as25
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Figure 5.2 (Hartmann26) -
Calculated line widths b, where b2 - l^a6/?!*2, for T 
sites in a Fee crystal as a function of the relative 
interaction strength a/2 from the position of the
interstitial for different orientations of the external 
magnetic field, <j b and u are the Larmor frequency of the 
lattice nuclei (ui_ - and the electric interaction
frequency (u- - f ) {VaJ3/ [4s(2s-l) ] }) , respectively.
The d hed lines to the right indicate the values for b in 
the Zeeman limit.
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H2-4/3T272A2IH (IN+l) [2/3 +1/ (4IW (IK+1) ) ] {X j 1/r6) . {5.16)

For integer spin nuclei, the second moment under the earns 
conditions is

As the external magnetic field is increased, the value for 
the second moment will approach the value obtained from 
the Van Vleck formula. The magnetic field at which M2 
changes indicates the strength of the quadrupolar cou­
pling. This is depicted in Fig, 5.2 as the value of b, 
which is proportional to the muon line width, changes as a 
function of magnetic field.26 The physics occurring is the 
change of quantization axis for the nearest-neighbor 
nuclei eigenstates.

Often, some particular form for Gx (t) is used to fit 
the data. This approach allows one to get an initial feel 
for the data. One particular form for Gx (t) is

If the fields are static, then a 2 is the second moment 
divided by two. However, the fields are not always static. 
This is caused by dynamic motion of the host spins or 
atoms or by the motion of the muon. When this occurs, a

M 2 “ a/97^7H2fi2 IN (IH+1) (£j 1/rJ) ■ <5.17)

Gx {t) = exp(-A2t2). (5.18)
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becomes smaller. This phenomenon is known as motional 
narrowing and will be explained by the following argu­
ment.10 For the static case, the distribution of local 
fields is (r. 1. for rigid lattice, no motion)

shr •1 * ~ l/(7T2r*1‘) (5.19)

where “ 2 (M2 )"^. T2 is a measure of time for the
dephasing of an ensemble of spins and is known as the 
spin-spin relaxation time. If the muon is allowed to jump 
n times during the time T2# then the dephasing will be 
much slower, because the dephasing in one site may be 
compensated by opposite dephasing in another site. Due to 
the random nature of the sites, one can use a one-dimen­
sional random walk to describe this phenomenon. The 
dephasing after one jump is

l ^ [  “  | 7 i h r , 1 , r |  ( S . 2 0 )

where r is the field-correlation time, t is a measure of 
time for the dipolar field to decrease to 1/e of its 
initial value. This decrease is due to diffusion of the 
muon, spin dynamics or diffusion of the host atoms (if the 
muon cannot move), or both. The distribution of dephasing
| A<j> | after n jumps at time t — nr is

A*2 - n ( ^ ) 2 - t/r (yShr - 1 'r) 2 - tf/(T2r *1 *)2 . (5.21)
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Dephasing Is said to occur when - 1 radian2 , so that
the effective time for dephasing t « T2 is given by

T2 - [r (7*hr>1>)3 ]-1 - fT2 r *1 ')aA  *• Tj1*'1, . (5.223

Upon taking the reciprocal of this equation, one obtains 
the effective distribution of the fields.

6h - 7r(Shr *1 *}2 « 5hr>1, , (5.23)

One sees that the effective distribution of fields Is nar­
rowed giving rise to a smaller value for the line width. 
This occurs only when the jump or correlation time r <

T 2r "^ " ■ When t « T2r * ̂  # the relaxation function is 
better approximated by a Lorentzian form.

Gx (t> - eXp(-t/T2) - expf-A^rt) (5.24)

In the range between the limits appropriate to Gaus­
sian or Lorentzian relaxation functions, a third form for 
Gx (t) is often used. It is commonly called an Abragamian 
and is given by the following expression.7

Gjf(t) - exp{-nxr 2 [exp(-t/f ) -1 + t/T ] ) (5.25)
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The prerequisite for use of this form Is that it goes to 
the proper limits. For >> 1, Eqn, 5.2 5 reduces to the
Gaussian form for Gx (t) . For Axr « 1, Eqn. 5.25 reduces to 
the Lorentzlan form for Gx (t). In the region of 4r a l, 
the uncertainty in t obtained from Eqn. 5.2 5 may be large. 
For this reason, zero- and low longitudinal-field juSR are 
commonly used to measure the field-correlation time. These 
two techniques will be discussed later.

The use of the Abragamian or Lorentzian forms allows 
one to obtain the correlation time as a function of tem­
perature ae is shown in Fig, 5.3.27 Information concerning 
muon and/or host atom diffusion can now be determined. If 
the correlation time is due solely to muon diffusion, then 
r is proportional to l/r or l/D depending on the diffusion 
mechanism.

In this section, we have described the effects of 
dipolar coupling (with and without quadrupolar coupling) 
for the cases of a dynamic and static muon and/or host. 
These phenomena will be applied to the study of the 
hydride compounds in the chapter 7.

5.2 ZERO-FIELD TECHNIQUE
Zero-field fiSR has proven to be a useful alternative 

technique. Its primary advantage Is that it is very sensi­
tive to motion of the muon and to dynamics of the host 
system (such as spin glasses) . The technique and its 
benefits will be presented in this section.



Figure 5.3 (Richter et al,27)
Muon field-correlation time as a function of temperature 
and hydrogen concentration in NbHx , The low temperature 
limits of the ft phase for the different hydrogen con­
centrations are shown above the temperature scale.
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For nonmagnetic: materials in zero-field, the Incoming 

muon's spin processes around the internal dipolar fields. 
Since these fields have a finite width to them, the en­
semble of muon spins will dephase. The time for dephasing 
is know as the zero-field spin-epin relaxation time and is 
inversely proportional to the width of the distribution of 
the fields. The data is described by the function

N(t) - N0expf-t/rM ) {1+aGj, (t)cos(^H + Bkgd (S.26)

which is the same as Eqn. 5.4 with u> ■ o. For the forward 
decay spectrum, ^ - 0 for muons initially polarized along 
the beam momentumj while for the backward decay spectrum,
4> equals *. After determining N0 , a, and Bkgd for both 
spectrums, Gz (t), the zero-field relaxation function, is 
obtained with help of a computer.7

Gzft) - [N£(t) - «N£(t) ]/[aBN£(t) + a p a N ^ t n  (5.27)

where the subscripts and primes denote the two different 
spectra and the subtraction of the background from each 
spectrum, respectively. The quantity ^ equals N0j-/No B , 
where Nor and Noa are the normalization constants in Eqn.
5.2 6 for the forward and backward spectra, respectively. 
This function depends on the correlation time and second 
moment for the muon. It is of a different form than G x (t)
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in Eqns. 5.6, 5.24, and 5.25. The following discussion 
will show how an analytic form for Gz (t) is derived.

Consider the c s b b of a muon surrounded by nuclei pos­
sessing static moments. If the angle between the initial

^  Amuon spin polarization <j *■ a z (0)k and the dipolar field H 
is 6, then the time evolution of ffZ (t) is20

tjz(t) *■ cos20 + sln20cos(T^Ht) . (5.26)

If the random fields ft are assumed to be isotropic with 
each component possessing a Gaussian distribution func­
tion, then the field distribution is

P(Hi) - ^/[<2*>*a]exp(- 7 jHf/2 A2) (i-x,y,z), (5.29)

o 2where & is the second moment for each distribution,

aVr,2 ■ <Hx> ■ - <H2> (5.30)

To obtain the relaxation function G z (t), the statistical 
average of a z {t) is found.

Gs(t) - ;;;Jz(t)P(Hx )P(Hy)P(Hz)dHJtdHydHz (5.31)

Hence, the relaxation function is

Gz (t) = 1/3 + 2/3(l-A2t2 )eXp(-A2t2/2) . (5.32)
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The second moment for this relaxation function is 2A2. The 
factor of two arises from the depolarization of the muon 
spin by fields in the x and y direction. In the transverse 
field case, the second moment is equal to a2 , because only 
the component of the dipolar fields along the external 
field depolarizes the spin.

If no quadrupolar interaction is present, then one 
can use the method prescribed by Eqns. 5.7 and 5.Ba to 
obtain the second moment, since the muon and nuclear 
Zeeman levels are degenerate, all the terms of the dipolar 
Hamiltonian (Eqn, 3,27) are kept.4 If ( is the angle 
between the initial polarization and r^, then the second 
moment for a single crystal is

M|F - 1/31(1+1) )2 (Ei(2 + 3 sin2fli)/ri) ,(5.33)
For a polycrystalline sample,

m |F - 4/31(1+1) )2 (Efl/rfl . (5.34)

One advantage of zero-field jjSR over transverse field is 
that the depolarization occurs at a higher rate. For the 
polycrystalline case,

AZ/AX - (5/2)*. (5.35)

If a quadrupolar interaction is present, then the 
second moment is given by Eqns. 5.16 and 5.17 for half-
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integer and integer spin nuclei, respectively. For the 
case of integer spin nuclei, the ratio of the depolariza­
tion rates is

ij/ix - (5/3>*. (5.36)

where a x is the strong field (Zeeman limit) value.
As was mentioned at the beginning of this section, 

zero-field ^SR is quite sensitive to the time fluctuations 
of magnetic fields. Kubo and Toyabe29 have obtained curves 
of G z(t) for different values of ra (Fig, 5.4b). For slow 
modulations of the field (rfi - 1), this figure shows that 
zero-field f*SH is much more sensitive to variations in r 
than the transverse-field technique (Fig. 5.4a).

In the past five years, the validity of Eqn. 5,32 has 
been questioned by Cello and Meier30 and Petzinger and 
Wei.31 The grounds for their arguments are the violation 
of three assumptions in Kubo-Toyabe theory.31 The first is 
that the depolarizing field is static. This assumption is 
violated because the dipolar Hamiltonian which couples the 
muon and nuclei can alter the spin orientations of both. 
The second assumption is that the distribution of fields 
is a continuous Gaussian function as described by Eqn. 
5.29. However, the depolarization is due only to those 
nuclei which are within a couple lattice distances, and 
will not produce a continuous Gaussian distribution. The 
third assumption is that the field distribution is isotro-
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Figure 5.4 (Kubo and Toyabe29)
Calculated muon spin relaxation functions for different 
values of the field-correlation time, r .  a.) High trans- 
verse-field relaxation function, Gx (t) . b. ) Zero-field 
relaxation function, Gz(t).
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pic. While this is true for sites which possess cubic 
symmetry, the field distributions for a BCC T-site are 
non-isotropic. Cello and Meier30 have calculated Gz (t) by 
the determination of eigenvalues and eigenstates of the 
dipolar Hamiltonian using Eqn. 5.37.

G z (t) - Tr{pexp[ (i/ft )Hddt]^exp[ (-i/a >Hddt]} (5.37)
where p is the spin density matrix.

P 2(2I+1)~JI[1 + (5.33)

Fig. 5.5 compares the relaxation functions for a static 
muon in 0 and T sites of a FCC lattice for spin-) nuclei. 
One drawback is that this calculation Includes only the 
nearest-neighbor nuclei to the muon.

While the Kubo-Toyabe depolarization function can be 
used for data analysis, caution must be exercised in the 
interpretation of results so as not to mistake the oscil­
lations of G z(t) as an indication of motion.

5.3 UWGITUDINAL-FIELD TECHNIQUE
The zero-field technique is a special case (B=0) of 

the longitudinal-field method. In this method, one begins 
with a small magnetic field along the axis of the initial 
muon spin. The experimental relaxation function is calcu­
lated using Eqn. 5.27. The field distribution for the x 
and y components is expressed by Eqn. 5.29. Due to the
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0,4

0.0

Figure 5*5 (Celio and Meier30)
Muon polarisation in zero field as a function of time. The 
solid line corresponds to Gz (tj calculated using Kufao- 
Toyabe theory. The dashed-dotted [dashed) curve represents 
the calculated relaxation function using Eqn. 5.37 for a 
positive muon at an octahedral (a tetrahedral) site in a 
Fee lattice interacting with the nearest-neighbor nuclei 
possessing J=-l/2 .
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presence of a longitudinal field, the z component for the 
field distribution must be changed to7

P<HZ> - 7#J/[<2^)iAz]exp(-7J(Hz-H0 )2/ 2a^ . (5.39)

These field distributions yield the following relaxation 
function where u - ĵiBext'

G jr (t) - 1 - 2a z/u 2[1 - exp (-A zt2/2 ) cos fut) ] + (5.40) 
2a z/u 3J o exp(-Azr2/2)sin(ur) dr

For u-0 (B-0) Eqn, 5.4 0 reduces to Eqn. 5.32. Experimen­
tally-determined relaxation functions along with fits to 
Eqn. 5.40 are shown in Fig. 5.6 for MnSi for various 
values of Bex^, This method allows one to experimentally 
determine the size of field necessary to decouple the 
nuclear dipole fields.

This technique is also useful in differentiating 
between static and dynamic fields (Fig. 5.7).7 A small and 
static internal field can depolarize the muon in trans­
verse field as efficiently as a rapidly fluctuating and 
large field. However, a small longitudinal field will 
appreciably affect the depolarization of the muon in a 
small and static internal field, but not in a rapidly 
fluctuating and large field. In the previous section, a 
word of caution was placed upon the interpretation of
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Figure 5.6 (Hayano et al.^8)
Field dependence of the longitudinal-fieLd relaxation 
functions in MnSi, The solid curves are fits to Eqn. 5.40.
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Figure 5.7 (chappert7)
Comparison of longitudinal- and zero-field muon relaxation 
functions for a.) a static random field and b.) fast 
dynamic fields. The fast dynamic field limit is reached 
when the fluctuation rate v exceeds ( ^ ^ e x t )  ■
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Gz(t). The same holds for the longitudinal-field tech­
nique.

8.4 SUMMARY
The use of different ^SR techniques have been shown 

to be sensitive to effects due to magnetic interactions of 
the lattice and muon and to diffusion of the particle. 
Chapter 7 will describe the experiments on metal hydride 
systems where the magnetic and electronic interactions 
coupled with diffusion theory will be used to explain the 
results.



CHAPTER 6 
MONTE CARLO SIMULATIONS

A Monte Carlo simulation models a physical situation 
using a computer. The method la so named due to the use of 
random numbers similar to those coming out of roulette 
games.32 initially, one starts with a model for the physi­
cal system. The generated random numbers are used in one 
of three ways. The first method uses the numbers to define 
the initial set of conditions for the system. The system 
is then allowed to evolve under a rigid set of rules 
prescribed by the model. The second way begins with one 
set of Initial conditions and lets the system evolve. In 
this instance, the random numbers are used to select the 
path of evolution with the weighting of each course pre­
scribed by the model. A third method is a combination of 
the first two where the initial conditions and the path of 
evolution are chosen randomly using the weighted probabil­
ities given by the model. All three methods yield numeri­
cally exact information within statistical errors. These 
errors may be reduced by increasing the amount of computer 
time. Since the last method averages over both initial 
conditions and evolution paths, the amount of computer 
time used may be large.

82
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The Monte Carlo technique has several applications. 

The first use is that information obtained from the simu­
lations can be compared to data from experiments to check 
the extent to which the model system correctly represents 
that real system. A second application is to check the 
validity of various approximations used in an analytical 
treatment. A third use is to procure information on sys­
tems where little or no experimental data exists. Thus, 
this method provides insight into models and motivates 
experiments on real systems.

This chapter will begin with a description of the 
process which is being modelled. This will be followed by 
a discussion of the application of the Monte Carlo method 
to this process. Finally, the results of the simulations 
will be presented.

6.1 THE MODEL
The initial motivation for the simulations arose from 

the appearance of small prefactors and small activation 
energies for the muon field-correlation times in metal 
hydride systems for temperature regions where the protons 
were diffusing.27'33'34 It was observed that the muon 
attempt frequency was two or more orders of magnitude 
lower than that for the proton measured by NMR in the same 
systems.3^ Naively, this did not make any sense since the 
motion of the muon should be limited by proton diffusion.
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For titanium dihydride, the hydrogen atoms occupy 
interstitial T sites which form a SC sublattice.36 Bustard 
et al.36 set out to determine whether the hydrogen atoms 
hop to first- or third-nearest-neighbor vacant T sites 
using NMR and Monte Carlo simulations. In their experi­
ments, they measured the salf-diffusion coefficient, D, 
for hydrogen using a stimulated echo pulsed-magnetic- 
field-gradient technique. Fig. 6.1 shows the sequence of 
rf pulses and magnetic field gradients used in the stimu­
lated echo method. They have also determined the mean 
residence time between hop, rd , from measurements of the 
spin-lattice relaxation time T^. Since the existence of 
several analytic forms from different models relating rd 
to T} leads to ambiguity in the value of the residence 
time, they used the Monte Carlo method to calculate ^(T^) 
for first- and third-nearest-neighbor hopping. The two 
quantities td and D, are related by Eqn. 6.1.

D « fL2/(6rd ) (6.1)

The constant f is the tracer correlation factor which 
accounts for non-random backward jumps of a vacancy and is 
dependent upon the vacancy concentration. The second 
factor, L is the length of the jump. After using the Monte 
Carlo simulations to obtain rd from Tj, they computed the 
limiting value of D using Eqn. 6.1 for first- and third- 
nearest-neighbor hopping. Fig. 6.2 shows the results of
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Figure 6.1 {Bustard et a_l.3e)
The pulse sequence for the stimulated-echo method of 
measuring diffusion coefficients.
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Measured and predicted values of the diffusion coefficient 
for Tih 1 i 5 5 as a function of temperature.
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their measurements of the diffusion constants along with 
the limiting values for D, The measurements coupled with 
their calculations show that the hopping is between first- 
nearest -neighbor sites. This would be expected from the 
calculations by Bisson and Wilson37 of the activation 
energies in 7 -TiHx , They found that the path with lowest 
activation energy {0.58 eV) was the one between first- 
nearest-neighbor positions. The activation energies for 
the second- and third-nearest-neighbor paths are 0.69 and 
0.65 eV, respectively.37 Therefore, these experiments and 
calculations show that hopping in ~r-TiHx is between first- 
nearest-neighbor sites.

Since the path for motion of vacancies (hydrogen 
atoms) is known, a model with only a few parameters will 
be developed to describe the field-correlotion time for 
the muon. The motion of the vacancies in the unperturbed 
lattice (no muon) occurs with some rate p. when the vacan­
cy is next to the muon, the rate for the muon to move or 
the rate for the vacancy to move to the site of the muon 
is p'. This allows the muon jump rate to differ from the 
proton jump rate. Two other rates, pj_n and Pout* have been 
added to account for the attraction or repulsion of vacan­
cies due to the presence of the muon. These reflect a 
change in vacancy jump rate as the vacancy approaches the 
muon. p±n is the rate that a second-nearest-neighbor 
vacancy to the muon will become a nearest neighbor. Pout
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is the rate that a nearest-neighbor vacancy to the muon 
will become a second-nearest neighbor.

6.2 APPLICATION OF THE HONTE CARLO METHOD
The 9 x 9 x 9  lattice used for the simulations had 

periodic boundary conditions which allowed particles to 
diffuse from one edge to the opposite edge. Initially, the 
muon was placed at the center of the lattice with seven (- 
It) vacancies randomly distributed. The random number 
generators utilized were the IMSL subroutine GGUBS and 
function routine GGUBFS. Both routines employed the same 
procedure to generate uniform deviates, but the subroutine 
GGUBS is able to generate more than one random number in 
each call. At the beginning of each simulation, the time 
of day was read in 1/300 second units. This integer number 
was converted to a real double precision value and used to 
seed the random number generator. The direction of the 
external magnetic field was picked randomly with respect 
to the coordinate system of the lattice. The spins on the 
remaining lattice locations (excluding the positions of 
the vacancies) were randomly given orientations randomly 
parallel and antiparallel to the field. After this was 
done, the dipolar magnetic field due to the protons in the 
lattice at the site of the muon was calculated. Having 
done this, the vacancies were allowed to move. During each 
time step, a random number for each vacancy was chosen. If 

the random number was less than the sum of the rates for
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each of the h Ix possible directions for motions, then the 
vacancy would be moved in the direction dictated by where 
the random number fell in the range of the sum of rates. 
For example, the six rates for a vacancy in one of the 
second-nearest-neighbor positions to the muon are: p for 
motion in the +x direction, p^n for -x, p for +y, p^n 
for -y, p for + z, and for -z- For the vacancy to move, the 
random number generated by the algorithm must be less than 
2pin + 4p. The range was divided into 6 intervals ordered
(Pin (~x>' Pin C“Y> r P (+*)i P (+Y), P ( + *>, P (-z)>- The 
interval into which the random number falls determines the 
direction the vacancy will move. If pin and p equal 1/5.1 
and 1/51, respectively, and the random number chosen is 
0.314, then the vacancy will move in the -y direction for 
the above example. After each time step, the dipolar 
magnetic field at the site of the muon is computed. The 
total number of time steps was usually 3 000 which was 
large enough to determine the field correlation time at 
the site of the muon, but small enough such that a vacancy 
was not likely to diffuse away and return full circle to 
the spot of the muon, Each simulation produced the dot 
product of the dipolar magnetic field as a function of 
time with a unit vector in the direction Df the external 
field, BeXt *

B (t) * ^dip(t) * Bext (6 .2}
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The program used for the simulations is listed in Appendix 
A.

The results of each simulation were then multiplied 
by the dot product of the dipolar magnetic field at time 
t-0 dotted with a unit vector in the direction of the

A
external magnetic field (B(0) - &dip(°) ' Be x O '
<B (t) B (0)> , which is used to calculate G(t), was obtained 
by averaging B(t)B(0) over all simulations with the same 
values for the four parameters: p, p f, Pin* arid Pout’

G(t) - exp[-T2/£(t-t')<B(t')B(0)>dt'] (6.3)

A field-correlation time, t , is defined such that 
<B(t)B(0)>/<B(0)B{0)> - 1/e.

A second significant quantity is the site occupation 
auto-correlation time. This number is a measure of the 
residence time for the particle at a particular site. The 
quantity was determined by summing N(t)At over the 3000 
intervals. N(t)-1 if the muon is at its initial starting 
point and 0 if not and At is the time increment.

In order to make the results independent of p, r and 
EN{t)At were each multiplied by p.

6.3 BESE T S
The results of the simulations are shown in Table 

6.1. The quantity <B(0)B(Q)> is proportional to the second 
moment for the muon.
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M2 * 7^H2 (ft/<2a3))2<B(0)Bf°)> (6.4)

The spin of the proton has been factored out of the brack' 
et to make the results applicable in the future to other 
systems. From Eqns. 6.4 and 5.14,

M2 - 4/157^ h2A2 IN <1n+1) (Ej l/r|) (5.14)
the theoretical value for <B(D)B(0)> may be found. For a 
muon occupying a substitutional site in a SC lattice, the 
summation in Eqn. 5.14 Is equal to 8.4 02/a6 . Therefore, 
the theoretical value of <B(o)B(0)> is 6.72. The values 
for <B(0)B(0)> obtained with the simulations are in rough 
agreement and give confidence to the correctness of these 
simulations. A second test for the simulations is the case 
when Pin , Pout' and P* equal p. If the probabilities are 
equal, then 4prc should be close to 1 for a SC lattice, 
where c is the vacancy concentration, r the field correla­
tion time, and p the vacancy jump rate,33 For this case, 
the simulations yield 4prc - 0.88, in good agreement.

The results in Table 6.1 have been ordered in terms 
of the parameter pr. In order to compare this to the 
results of the ^SR experiments, one must calculate the 
product of the muon-field correlation time (obtained from 
a fit to an Abragamlan form for the relaxation function 
(Eqn. 5.25) and the vacancy jump rate. The results of 
these simulations will be used in the following chapter.



TABLE 6.1
Results of the Monte Carlo Simulations
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Simulation# P r o b a b i l i t i e s < B f 0 )  B f  0 )  > P r p SN f t ) a t

0 1 P ' “ P o u t " P  P i r T 1 0 P 6 . 9 6 6 8

0 2 P i n “ P o u t “ P  P ' - 1 0 p 6 . 2 2 12 13

0 3 P ' * P i n * P  P o u t - P / 1 0 0 6 .  38 1 3 19

0 4 P ' - P i n - P o u t - P 6 . 9 7 2 3 34

0 5 P ’ “ P i n " P  P o u t ~ 1 0 P 6 . 4 0 32 52

0 6 P i n “ P o u t “ P  P ’ - P / 1 0 Q 6 . 9 4 4 9 1 6 0

07 P i n “ P o u t * P  P 1" 0 6 . 5 6 52 I n f i n i t e

OS P o u t “ P  P i n " P / 1 0  P ' “ l O p 6 . 6 2 6 1 7 9

0 9 P i n “ P  P o u t “ P / 1 0 0  P* - 0 6 . 2 3 6 1 i n f i n i t e

1 0 P o u t " P lmP  P i n “ P / 1 0 6 ,  6 8 9 8 1 2 1

11 P o u t “ P f “ P  P i n “ P / 1 0 0 7 . 0 9 4 5 0 1 5 7

12 P o u t “ P  P i n mP / 1 0 0  P ’ - 0 6 . 5 2 4 5 2 i n f i n i t e



CHAPTER 7 
RESULTS AND DISCUSSION

The interest in metal hydrides dates from the early 
1950s. At that time, the interest was generated by the ap­
plication of these compounds for use in control rods of 
nuclear reactors. Initially the studies were devoted to 
the determination of phases and lattice constants, over 
the years the interest has changed to diffusion of the 
hydrogen atom in hopes of understanding the diffusion 
mechanism for hydrogen storage purposes. The present 
diffusion studies have focused primarily on FCC hydrides 
containing metals which have small nuclear moments.

Since the muon is a spin-i particle with one unit of 
positive charge, it can be considered an Isotope of 
hydrogen. For hydrides, the muon enters the sample as the 
"last hydrogen added," and competes for the same sites as 
the hydrogen atoms. Due to the muon's lower mass, one 
expects its motion to be impeded by the slower motion of 
the hydrogen atoms for near stoichiometric hydride com­
pounds .

The results of transverse-, zero-, and low longitudi- 
nal-field studies of near-stoichiometric hydrides of 
titanium, zirconium, yttrium and lanthanum for static and

93
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diffusing muons are reported below. The lattice structure 
for these FCC hydrides is shown in Fig. 7.1. The phase 
diagrams and lattice constants for these hydrogen alloys 
are presented in Figs. 7.2 - 7.S.

The lattice constants as a function of temperature 
for TiDi . 9 3  and TiH 1 < 9 9 are reported in Fig, 7.2b. 4 0  

Tcritical t^e temperature for transition from the 6 

phase to the y phase. Table 7.1 shows that to within half 
a percent that the lattice constants for TiH^.gg are the 
same as for TiD^^g,

Table 7.1
Lattice constants for titanium hydride as measured by x- 
ray diffraction, 4 0

TIH 1 . 9 9 TiD1.90 ratio
a(A> (T - 79 K) 4,525 4.516 1.0027
c(A> (T - 79 K) 4.279 4.2 67 1 .0 0 2 s
c/a (T - 79 K) 0.945 0.94 5 1.0000
a (A) (T - 315 K) 4.454 4.440 1.003 2

Tcritical(K) 310 ± 4 310 ± 4

Fig. 7,2c shows the phase diagram for titanium 
hydride. The four crystalline forms for TiHx are the 
hexagonal metal («), Bcc hydride (6 ), FCC hydride (7 ), and 
FCT (Face-Centered Tetragonal) hydride (i). The titanium 
hydride samples used in our study were of the 7 and £
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o

*'

Figure 7.1 (Kossler et al,39}
Lattice structure for FCC metal hydrides. The open 
squares, open circles, and closed circles correspond, 
respectively, to the metal atoms, octahedral sites, and 
tetrahedral sites (which are occupied by the hydrogen 
atoms),
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constant for TiD^.gg as a function of temperature.
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Phase diagram for zirconium hydride. Atom percent 
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Figure 7.5b-c (Klavins et al.47 and Bonnet and Daou48) 
b.) Lattice parameter for lanthanum hydride as a function 
of hydrogen concentration at room temperature, c.} Lattice 
parameters for several rare earth dihydrides as a function 
of temperature. The curves can be parameterized by a(T) - 
Sq + a^T +■ a2T2 where T is in a C and a{T} in angstroms.
For LaHj, an, aj_, and a2 equal 5.6689 A,
3 . 400 * 10"5 A/‘C, and 7.1 ■ 10"9 A/^C2 , respectively. The
units for the ordinate are arbitrary, since several of the 
curves were shifted parallel to the abscissa.
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phases. The vacancies in the nonstoichiometric samples are 
randomly distributed In the hydrogen SC sublattice.

Fig. 7.3 shows the phase diagram far YHX . The crys­
talline forms of YHX are the hexagonal metal (<*), FCC 
dihydride (YH2±X , fl) , and hexagonal trihydride (YH3 _X ).
The lattice constant for yttrium dihydride is S.204 A . 4 9  

Our samples are in the 0 (YHj) and a+p fYHi,7 7 ) phases.
The hydrogen concentration in each phase in the YH^ . 7 7  

sample can be estimated. The concentration of hydrogen in 
the B phase of the sample at a given temperature is rough­
ly that for the 0 phase at the boundary between the B 
phase and «+0 phase regions for that temperature. The H/Y 
ratio of the B phase for YH1 - 7 7 at - 1 0 0 "c is approximately 
1.93. Similarly, the -phase hydrogen concentration at the 
same temperature is 0.G4. This means that roughly 901 of 
the YHi _ 7 7  is composed of B-phase yttrium hydride. A 
majority of the hydrogen atoms are in T sites for the 3 
phase, but the percentage of occupied O sites remains 
unresolved. This will be discussed in more detail in sec­
tion 7.2.

For ZrHx , the hydride consists of five distinct 
structures with several mixed phase regions as shown in 
Fig. 7.4c. The first phase has the hep structure (a) of 
pure Zr. The second is of the high temperature BCC struc­
ture (&). The third one appears in the mixed phase &+(+? 
and is a tetragonal structure (7 ) (Face-Centered Tetra­
gonal (FCT)) with c/a > 1. The hydrogen occupy alternate
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tetrahedral sites leading to a stoichiometric ZrH. 4 4  The y 
structure is believed to be metastable. The fourth struc­
ture is FCC (£) and has an average lattice constant of 
4.78 A over its concentration range at room temperature 
(Fig. 7.4a) . 4 1  The fifth structure is FCT (*) with c/a <
1, This phase is stable to very high temperatures, but the 
c/a ratio will not be constant due to the temperature 
dependence of c . 4 0  Both a and c are dependent on hydrogen 
concentration (Fig. 7.4a) . 4 1  Our sample is of the t phase.

Lanthanum hydride has four primary structures: HCP 
(«, pure metal), FCC (B, pure metal), BCC (7 , pure metal) 
and FCC hydride(Fig. 7.5a) . 4 5  It has been found that 
hydrogen occupies T sites of the FCC hydride phase for 
H/La < 1.94 by proton second moment measurements, 4 6  For 
concentrations greater than 1.94, the hydrogen atoms begin 
to occupy o sites. Fig, 7,5b shows that lattice parameter 
as a function of concentration and shows that a - 5.665 A 
for LaH2.06 at 2 9 5  T ^ 0  lattice parameter for LaH2 as a
function of temperature is shown in Fig, 7.5c.

7.1 TRANSVERSE-FIELP STUDIES
The data from the transverse-field experiments were 

fit in two different manners. The first method used a non­
linear least squares routine to minimize chi-square to 
Egn. 5.4 using the form for Gx (t) specified in Egn. 5.18 
to fit each spectrum separately. This method assumes that 
x 2 is a continuous function of n parameters which describe
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a hypersurface in n-dimensional space. One problem in 
using this method is that the search range of the para­
meters must be close to the correct minimum in The 
second method used an algorithm which combined the method 
of linearizing the fitting function with a gradient search 
(Marquardt) . 4 9  This method was employed to fit some of the 
data to Eqn, 5.4 with the form of Gx (t) as specified by 
Eqn. 5.25. The backward and forward spectra during this 
process were fitted simultaneously. This method allows for 
a crude search of the hypersurface during the minimiza­
tion of x 2 * Both fitting algorithms were found to be in 
agreement when similar forms for Gaussian Gx (t) were used.

A. Titanium Hydride
The muon depolarization rate, A , for the titanium 

hydride samples is shown in Fig. 7.6. The plot can be 
divided into four different regions: I) a low temperature 
concentration-dependent plateau, II) a transition to a 
lower rate which occurs below room temperature, III) a 
con cent rat ion-indepen dent plateau near room temperature, 
and IV) a region of motional narrowing due to diffusion of 
muons and/or hydrogen on the H sublattice (T sites) ,

The theoretical second moment for a static muon may 
be calculated by using the Van Vleck formula for a poly- 
cryetalline material (Eqn, 5.14, relabelled 7.1).

M 2  - ( 4 / 1 5 Ih(iN+1) (sj V*J) (7.1)
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Figure 7.6 {Kossler et al.34)
Muon depolarization rate, A, as a function of temperature 
for the three samples of TiHx studied. The lines serve as 
a guide for the eye.
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If the line shape is Gaussian, then the measured second 
moment is

M 2 - 2 a 2 (7*2)

Since the gyromagnetic ratio (which is proportional to the 
magnetic moment) for titanium is very small, only the 
contribution from the hydrogen nuclei will be considered 
<7H - 2.675 X IQ4 s“1 G"1, lfi - 8.51 x 104 S-1 G - 1 ) . 1 2 In 
the calculation of A for both 0 and T sites, the effect of 
the mutual spin-flips of the protons must be included.
This has the effect of reducing the fourth moment of the 
^SR signal by 2 2% which lowers the line width of a fitted 
Gaussian by approximately 5% (Appendix B). The variance of 
c/a and a for the two phases (7 and £) was neglected in 
this calculation since i) the volume is roughly a constant 
and ii) the computer calculations for a few test cases 
produced differences in a  of less than a percent* Assuming 
a 7 -phase lattice with a»4.4 54 A, no vacancies, and mutual 
spin-flips of the protons, the depolarization rates are 
0.298 for octahedral site occupancy (Aqct) and 0*189
>js- 1  for tetrahedral site occupancy (AtetO * T^ese values 
will serve as a guide for determination of site occupation 
by the muon as a function of temperature.
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1. Region I
The constant depolarization rate in Fig. 7.6 for each 

sample indicates that the muon is stationary at low tem­
peratures. The hydrogen concentration dependence of the 
average a  is reflected by the x-1,99 sample having the 
highest value for the depolarization rate and the x~l.S3 
sample the lowest. This observation can be interpreted to 
indicate that the sites occupied by the muon are a mixture 
of o and T sites. The change of a with concentration can 
then be explained by the probability for T site occupancy 
increasing as the hydrogen content decreases. The 
depolarization rate dependence on 0 and T site occupancy 
can be made explicit by

where P is the probability of tetrahedral occupation. AEXp 
is the observed muon line width? while AocT and ATET are 
the line widths for 0 and T site occupancy by the muon. If 
one assumes that muons stop in 0 sites initially and that 
those that have a vacant nearest-neighbor T site transfer 
In a short time into the vacancy, then the probability for 
a muon to occupy a T site is

(7.3)

P - &(l-x/2) (7.4)



2aEXP plotted as a function of (l-x/2) in Fig. 7.7. The 
line is a least squares fit to Egn. 7.3 with aoct and a^et 
as the free parameters. The values determined from this 
fit are Ao c t  - 0.252 (3) and a -t e t  “ 0.172(5)
This Aijet w i H  b® discussed in section 7.1A.3. This value 
for aoct is much lower than that calculated from the Van 
Vleck formula leading one to postulate a local lattice 
expansion around the muon. This is not surprising since 
the muon often causes a local lattice dilation as was 
mentioned for copper in section 3.3C. The calculated local 
lattice expansion is approximately 6(1)1. Alternatively, 
one can say that each nearest-neighbor hydrogen is dis­
placed 0.13 A outward. This distortion presumably arises 
from the shortness of the distance between O and T sites 
in an undlstorted lattice {j3/2 times the tetrahedral- 
tetrahedral site spacing), and the fact that the muon's 
spatial wavefunction is much larger than that of a 
hydrogen atom.

2. Region II
Fig, 7.6 shows a region of transition for each sample 

in the vicinity of room temperature. This region occurs at 
different temperatures for each sample. For x-1.83, the 
muon stops in a tetrahedral site approximately 7 0% of the 
time in region I. This leaves 3 0% of the muons to find T 
sites in region II. This change in the depolarization rate 
occurs at low temperatures where vacancy and muon motion
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Figure 7.7 (Kossler et al.34) _
The depolarization parameter, AExp, in region I for each 
titanium hydride sample plotted as a function of vacancy 
concentration. The line is a least squares fit to Eqn. 
7.3.
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is limited and can be explained by the presence of an at­
tractive force between the rauons and vacancies. For 
X-1.B3, the number of vacancies among nearest-neighbor and 
second-nearest-neighbor sites is 2-3. Therefore, if there 
is no nearest-neighbor vacancy, then there may be 2-3 
vacancies which only have to make one jump to be a nearest 
neighbor. Since there is a distortion of the local 
hydrogen sublattice lattice present for a muon in an 
octahedral site, this means that energy is being expended 
to "push'* on the nearest-neighbor hydrogens. The system, 
therefore, finds it energetically favorable to allow the 
hydrogen to swap places with the vacancy. With a vacancy 
as a nearest neighbor, the muon will move into this t 
site.

For X"1.99, there are only 1 in 200 T sites available 
for occupancy. When the muon begins to move, the value of 
A drops below a -jet (Fig, 7,6) due to averaging over sev­
eral octahedral sites (motional narrowing). In other 
words, the probability for a muon to find a vacant T site 
is small for temperatures less than 350 K. As the tempera­
ture increases above 3 50 K, the time to find a vacant T 
site decreases. This is evident in the recovery of the 
depolarization rate.

Quantitatively, one can calculate a mean time of 
stay, r s , for a muon at an octahedral site. Since there is 
a small percentage of muons initially in T sites for 
temperatures below the motional narrowing region, the
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field-correlation time, r, will not be equal to How­
ever, the field-correlation time, obtained from an 
Abragamian form for the relaxation function, can be used 
to obtain rs via the parameter * (defined in Appendix C) , 
For an Abragamian form of the relaxation function (Appen­
dix C) ,50

a - A2r^f/(f+fM ) (7.5)

where t ^ is the mean lifetime of a muon, 2.197 jus and a2
is the muon second moment used in the Abragamian form for 
the relaxation function, 1.24 x  10“3 p a ~ 2 . If one assumes 
that there are two possible trapping sites, octahedral and 
tetrahedral, and that the probability of being in a T site 
initially Is given by Eqn, 7.4

P - 8(l-x/2) . (7.4)

If the trapping radius into a T site includes only 
nearest-neighbor T sites, then the effective vacancy con­
centration, c 1, equals P. An expression for rs can be 
derived in terms of = (Appendix c).50



113

t b - c'r^[-0.5(1 + C ' + (1-C*)^TETr^/(«“At ETt i f7 -6)
± [0.25x{ (1-C W ( « - a |e t v ) >2 +
(1-c1 ) c 1 &0CTr jj/ (“-iTETf 1 V 2  ]~1

2 2^TET an<* ^OCT ara ttie second moments for a muon In a 
tetrahedral and octahedral site, respectively/ and can he 
calculated using the line widths obtained in the previous 
section.

AOCT “ 2AOCT f aTET “ 2aTET (7*7)

2 2The Values for C 1, A^ET' and aOCT are 0-04(8)/ 0,059(3) 
fjs“2, and 0,127(3) fis~2 , respectively. Since the expres­
sion for ra (Eqn. 7.6) is of the form of a quadratic 
formula, there will be two values for the time of stay 
except when the term raised to the one-half power is zero 
which occurs at the minimum value of i, As a check of the 
effective vacancy concentration, c' can be calculated by 
using the values given previously for a^ETr AOCT ant* Tp • 
The value obtained for the effective vacancy concentration 
is 0,12(5) which agrees with the other value for c 1
(0.04(8)). Using this calculated value of c 1 and the
values for « obtained from Eqn. 7,5, rB may be calculated 
as a function of temperature and is shown in Fig. 7.8. The
line is a fit to Eqn. 7.8 with the parameters rQ and Ea
equal to 10-13<Ds and 0.48(8) eV, respectively.
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Figure 7.8 The mean time of stay for a muon at an oc­
tahedral site ,  T S ,  plotted as a function of temperature. 
The line is a least squares fit to Eqn. 7.3.
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r B -  r ^ e x p f E a / k T )  ( 7 * 0 )

The activation energy, Ea , la the energy necessary 
for the muon to activate out of an octahedral site. This 
is smaller than the activation energy far a proton in a T 
site, 0,507(10) eV.21 For titanium hydride, the hydrogen 
vibration frequency is 3,3 x 1013s-1.21 From the value for 
r0 , one can see that the muon attempt frequency (l/r0 ) is 
of the same order of magnitude implying that the vibration 
of the hydrogen lattice is the mechanism responsible for 
the activation of the muon out of an O site.

The model presented above will always yield a dip (or 
a minimum) in the depolarization rate, A (or in the alpha 
parameter). However, the depolarization rate, a , as a 
function of temperature for x-1.97 does not have a minimum 
implying the effective vacancy concentration is too high 
for this model to be valid. One can however say that the 
majority of the muons are trapped in O sites until near 
room temperature and are able to find a vacant T sites at 
a higher rate than for TiHli99 above this temperature.

3, Region H I
Fig, 7.6 shows a concentration-independent plateau 

near room temperature for x-1.8 3 and 1.97 and suggests 
that the same might be observed for x-1.99 if the measure­
ments were extended to a higher temperature. The value of
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a for this plateau is 0.175(2) ^s"1 which agrees with the 
value obtained from fitting the depolarization rate in 
region 1 to Eqn. 7.3 of 0.172(5) ^s"1. The a value for a 
muon in a T site and no local distortion does not agree 
with this. One possible explanation is that there is a 
vacancy next to the muon in the T site. However, the 
probability of this occurring for the x-1.97 sample is 
extremely small assuming that a nearest-neighbor vacancy 
is not bound to the muon, A reasonable alternative is to 
assume a 2.6(4)% lattice distortion or 0.06(1) A relaxa­
tion of the nearest-neighbor hydrogens. For TiH^ 199 and 
TiD^'9g, the spacing between T sites is 2.2 27(1) and 
2.220(1) A, respectively,40 and can be parameterized by an 
equation with a term proportional to the zero-point motion 
of the particle (l/7m) plus a second term equal to a con­
stant.

a - aQ + k/7m (7.9)

If m is set equal to the mass of the muon, then the dis­
tance between T sites is 2.27(3) A. This agrees with the 
value of 2.285(9) A for the rauon-hydrogen distance ob­
tained from the muon depolarization rate.

4. Region IV
Fig. 7.6 shows a region of motional narrowing at high 

temperatures. This may be associated with the activation
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of the hydrogen atoms out of T sites. Using the values of 
r t the f ield-correlation time, obtained from a fit to an 
Abragamian form for G^ft) , the correlation times are 
plotted as a function of inverse temperature in Fig. 7.9. 
The muon field-correlation time disclosed in this figure 
is of the same order of magnitude as that of the proton, 
but the activation energies (the slope of the lines) for 
the muon and the proton (0.507(10) eV)21 are quite dif­
ferent. The results of least squares fits to Eqn. 7.10 
with r 0 and Ea as the free parameters are shown in Table 
7.2

These results are in direct contradiction to classical 
blocking theory since the motion of the muon should be 
impeded by that of the hydrogen atoms.

Table 7.2
Prefactor and activation energy for fits using Eqn. 7.10 
to TiHx data.

(7.10)

1. 83 1.4(7) x 10-6 
1.9(9) x 10-6

Ea-ten
0.38(2)

1. 97 0.38(3)
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Figure 7.9 (Kossler et al.34)
Muon field-correlation time plotted as a function of 
temperature for TiHi 0 3  and The lines through
these points are a least squares fit to Eqn. 7,10. The 
dashed lines correspond to proton correlation times mea­
sured by NMR . 2 1
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Secondly, since rQ is independent of concentration, 

the field-correlation time is inversely proportional to 
the vacancy concentration. This Indicates that the change 
of the field at the site of the muon is dependent upon the 
motion of vacancies. This will involve the motion of the 
nearest-neighbor protons, the muon, or both. A second way 
to see this is to select data points where field-correla­
tion times are equal for both samples and calculate the 
crv product where c is the vacancy concentration and rv is 
the vacancy jump rate given by 3 6  x l012s-1exp(-Ea/kT) 
(where Ea - 0.507 eV is the proton activation energy).21 
The temperatures for which the two samples have ap­
proximately equal correlation times are 435 K and 543 K 
which yield crv products of 4(1) x  1G6 s-1 and 11(6) x  10G 
b - 1  for x —1.83 and 1.97, respectively. Since the values 
for crv are the same within the uncertainties, the muon 
field-correlation time is dependent on vacancy motion as 
was shown previously.

The discrepancy between activation energies measured 
by ^SR and NWR has been observed in other metal hydride 
systems, such as ZrHx ,33 NbHx27 and PdHx .51 This dis­
crepancy appears to be limited to hydrides with a hydrogen 
concentration greater than 60%, because the p S R data of 
Doyama et al.33 in VHq^qj shows that the motion of the 
muon is limited by the motion of protons. Richter et 
al.27, using Monte Carlo calculations for tracer dif­
fusion, have developed a model to explain the muon cor-
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relation time in NbHx . They find that the field-correla­
tion time is a function of muon and proton attempt fre­
quencies and hydrogen concentration.

 —  (7.11)r ^ l - x / 2 ) rH (i-x/2)f

The quantities f rH and f are the muon jump frequency, 
the proton jump frequency and the correlation coefficient, 
respectively. The problem of tracer diffusion for one- 
dimensional lattice has been solved analytically by Fet- 
zinger.50 He finds, as Richter et al.*7 did in their Monte 
Carlo simulations, that the time , r , is a measure of the 
mean time for a vacancy to diffuse to the site of the 
muon. Richter et al.*7 assume that the time, r, is equal 
to the muon field-correlation time measured by **5R. How­
ever, since the proton has a sizeable magnetic moment, the 
field-correlation time is not equal to the auto-correla­
tion time if the protons are also moving. Gygax et al.51 
have postulated for PdHx that the hydrogen atoms surround­
ing the muon move slower than those not near the muon. 
However, they give no reason why the nearest-neighbor 
hydrogen atoms move slower. Hartmann et al.®* (Richter 
included) have also adopted this picture for NbHx , but 
also fail to give an explanation. Gygax et al.®3 have 
performed muon spin depolarization measurements on single- 
cryetal PdHQj 7 4 and find a decrease in the occupancy of
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nearest-neighbor hydrogen sites as the temperature in­
creases. This seems to contradict their earlier explana­
tion concerning the slower motion of the nearest-neighbor 
hydrogens. However, they do not comment on this discrepan­
cy. Doyama et al.33 have also observed the disagreement 
between proton and muon activation energies in ZrHx , but 
give no explanation. The Monte Carlo simulations described 
in Chapter 6 have been employed to try to understand this 
problem.

Since the muon is sensitive to changes in its mag­
netic environment, the field-correlation time is the 
significant quantity. In Table 6.1, results of the Monte 
Carlo simulations for pr are given as a function of vari­
ous movement probabilities for the vacancy. In order to 
compare the data to the results of the simulations, the pr 
product for each temperature point must be calculated.
Korn and Zamir*1 have determined the hydrogen jump rate, 
r, as a function of concentration, x, and temperature for 
y-TiHx .

r - r Q (l-x/2)exp(-Ea/kT) 
where r0 - 36(7) * 101* s"1

(7.12a)
(7.12b)

and Ea - 0.507(10) eV (7.12c)

The vacancy motion rate, rv , is the same as that for the 
protons without the blocking factor.
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(7.13)

For a simple cubic lattice, the probability, p, for motion 
of a vacancy equals rv/4,3® Using this, the pr product for 
TiHj_ 9 7  can be calculated. The results of this are shown 
in Table 7.3. The uncertainties in the pr product result 
from the uncertainties in r , rG and Ea .

With the exception of the point at 583 K f pr is on 
the order of 50 or greater. For a stationary muon, the pr 
product is equal to 52 {Table 6.1). This is less than 
several of those listed below. From the results in

Table 7.3 
pr products for TiHi > 9 7 data.

T(K) r fus) _____pr

432 4*3(7) 5(2 X 101
458 2.1(3) 5(2 X 1G1
477 1.3(2) 5(2 X 101
493 0.9(1) 5(2 X 101
508 0.8(1) 7(2 X 101
523 0.6(1) 9(3 X 101
543 0.49(9) 9(3 X 101
563 0.35(7) 9(3 X 101
58 3 0.04(6) 1(2 X 101
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Table 6,1, it is seen that for pr to equal 90, the proba­

bility for a vacancy to become a nearest neighbor to the 
muon must be decreased. This will be used in the develop­
ment of models in the following paragraphs.

One possible explanation of the data in light of the 
results of the simulations is that the motion of the muon 
is limited to nearest-neighbor hopping and that there 
exists an attractive force between the muon and the 
nearest-neighbor hydrogens. However, this picture has 
difficulty explaining the measured muon activation energy 
for the following reason. If the nearest-neighbor protons 
are bound, the activation energy for these hydrogen atoms 
to move would be greater than that for hydrogen atoms not 
near the muon. In other words, the activation energy 
measured by the muon should be Ea + AU where Ea is the 
activation energy for protons not near the muon and aU is 
the additional binding energy of the nearest-neighbor 
protons. However, the activation energy associated with 
the muon field-correlation time is less than Ea rather 
than greater,

A second possibility is that it is not energetically 
favorable for a vacancy to occupy a nearest-neighbor eite 
and that the muon tunnels to a second-nearest-neighbor 
site. This idea is encouraging for two reasons. The first 
is that the nearest-neighbor hydrogens do not move which 
allows the field correlation time to be larger than is 
measured by NMR. Secondly, the polaronic motion of the
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muon allows for a small prefactor and small activation 
energy for the correlation time. If this is the case, a 
qualitative model can be developed.

Heutron scattering has confirmed that the potential 
which describes transitions between vibration states for 
protons in -f-TiHx is approximately harmonic.35 For 
hydrogen diffusion to occur, the protons must be in an 
excited state to tunnel through a barrier to a vacant 
site. The presence of the muon distorts the nearest-neigh­
bor titanium atoms and causes the potential to be enhar­
monic. This change in energy levels and spacing reduces 
the probability for a nearest-neighbor proton to tunnel to 
a second-nearest-neighbor tetrahedral site and causes the 
proton to be bound to this site.

Since the postulated model does not allow or limits 
motion of the muon to nearest-neighbor tetrahedral sites, 
the muon presumably diffuses to second- or third-nearest- 
neighbor sites. The small prefactors reported in Table 7.2 
indicate that the motion of the muon is polaronic in 
nature. As was mentioned in chapter 6, Bisson and Wilson37 
have calculated the activation energies for protons in T 
sites of i -TiHx for second- and third-nearest-neighbor 
diffusion paths to be 0.69 and 0.65 ev, respectively.
Since the energy difference between these two paths is 
small, and the distance to the second-nearest-neighbor 
site is shorter by a factor of /2/3, the likely path for 
muon diffusion is across the cube face of the hydrogen
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oublattice using a thermally-activated tunneling mecha­
nism. This model suggests that the hopping rate (I/O can 
be fitted to a form similar to Eqn. 4.3, However, since 
the number of vacant T sites is limited, a factor must be 
incorporated to account for the effective vacancy con­
centration, cv , and the coordination number, Z.

The coordination number is the number of second-nearest- 
neighbor sites to which the muon can tunnel. For this 
geometry, Z equals twelve. The results of fitting the data 
to Eqn. 7.14 are given in Table 7,4 and are shown in Fig.
7.9. A value for J will be given following a discussion of

Table 7.4
Tunneling matrix elements and activation energies for fits 
using Eqn. 7.14 to TiHx data.

1.83
1.97

l£v3JweV) 
0 . 5 6 ( 2 )  

0.18(1>

Eais!D -
0.36(5)
0.36(1)
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The effective vacancy concentration, Cy, is the 

probability that the second-nearest-neighbor site is 
vacant. The expected minimum value for this quantity is 
the nominal vacancy concentration which assumes that the 
probability for a vacancy to occupy any T site is equal. 
Energies for vacancy occupation of different sites can be 
assigned. A simple model would assign an energy of E3 (E^ 
> 0 }  to the nearest-neighbor sites, Ej (Ej < 0) to the 
second-nearest-neighbor sites and E3 for the remaining 
sites in the lattice. This models the decrease in vacancy 
occupancy of the nearest-neighbor sites. Since a site can 
be in one of two states {vacant or occupied) , the dis­
tribution of vacancies is characterized by a Fermi dis­
tribution function (E3 - 0) :

ci " c + (l-c^expfEEi)

where c is the nominal vacancy concentration. In order to 
decrease the number of independent parameters in this 
model, let us assume that E^ equals -E2 . The ratio c^/c^ 
is greater than 10 for c, E 2 and T equal to 0.015 
(x-1.97), -50 meV and 500 K, respectively. This tempera­
ture was chosen, because the measurements were made in 
this vicinity for x-1.97 (c~0.015). The value of 50 meV is 
not unreasonable since energies associated with the lat­
tice are of this order. The value of C2 from above is



127
0.05(2) which can be used along with the result in Table 
7.4 to find a value for J. For X-1.B3, c2 is equal to 
0.23(2} under the same conditions as the preceding cal­
culation. Using these values for cv (c2), the values for J 
were calculated and are presented in Table 7.5. The agree­
ment between the two values for the tunneling matrix 
element is reasonable.
Although the value for J in aluminum is 2.3 meV for a 
tunneling distance of 2.02 A , 20 the calculated values for 
the tunneling matrix element in TiHx seem large consider­
ing the distance of 3.15A between the two sites.

Table 7.5
Probability for the existence of a vacancy at a second- 
nearest-neighbor site (cv ), tunneling matrix element (J) , 
and activation energy for the two ^SR titanium hydride
samples at 500 K (Ea ).

X Cv J(meV) Ea (eV)
1.63 0.23(2) 1.2(1) 0.36(5)
1.97 0.05(2) 0.8(2) 0.36(1)

The value of J may be estimated with the Mathieu 
formula (Eqn. 4,7). If one assumes that v QI the barrier 
height, is equal to the proton activation energy calcu­
lated by Bisson and Wilson, 0.69 eV, and substitutes the 
mass of the muon and the distance between second-nearest-
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neighbor sites for m and d, respectively, the value calcu­
lated for J is 7 peV. The energy for zero-point motion of 
a muon can be calculated from the energy for zero-point 
motion of a proton in -r-TiHx , 0.21 eV,21 and is 0.65 eV. 
Since the energy for zero-point motion of a muon is almost 
equal to the barrier height, the value of J from the 
Mathieu formula is a severe underestimation of the actual 
value by a couple orders of magnitude. However, the ex­
perimentally derived value of the tunneling matrix element 
is probably too large compared to that found for muons in 
aluminum where J is twice as big for approximately half 
the tunneling distance.

A second aspect of this model to be investigated is 
the activation energy. This is a measure of the coupling 
between the lattice and the muon. The results from inelas­
tic neutron scattering in TiH2 show discrete levels for 
the hydrogen atoms implying that the T-site protons are 
not coupled.35 Therefore, the T-site muon only couples to 
the four nearest titanium atoms. This does not contradict 
the postulate concerning the distortion of the local 
hydrogen lattice from the previous section, since the 
displacement of the titanium atoms can cause this. The 
acoustic mode for TiH2 has an energy (Ku q ) of 39(3} meV as 
measured by inelastic neutron scattering.54 Using Eqn. 
7.16, the force constant, k, can be calculated.55

a{2k/M)1/2 - 2 (7.16)
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The variables M and wD are the mass of the titanium atom 
and the acoustic mode frequency, respectively. This yields 
a value of 2.2(6} eV/A2 for the force constant. The 
polaron binding energy, E0 , is equal to twice the activa­
tion energy. The true activation energy, Ea , is approxi­
mately 0.41(2) ev. The difference between the measured, 
which was obtained from the muon field-correlation times 
and the actual activation energies is due to the inclusion 
of the exponential in cv (Eqn. 7.15) to Eqn. 7.14. The 
four nearest titanium atoms must, therefore, relax 0.4(1)
A to accommodate a polaron binding energy, E0 , of 0.82(4). 
This large value for the polaron binding energy implies 
that the coupling between the muon and the lattice is very 
large. Eqn. 7.17 yields a value of 1.9(3) eV/A for the 
coupling constant, g,55

Ea “ g2/4k (7*17)

This value for the coupling constant is approximately 
three times greater than that for muons in copper.55

In summary, this model has the attractive feature 
that the measured field-correlation time for the muon is 
equal to its diffusion-correlation time. It allows for a 
binding of the hydrogen to nearest-neighbor sites. How­
ever, the experimentally determined parameters J and Ea
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are much too large compared to values obtained from simple 
calculations.

The models presented are two different attempts to 
explain the high temperature data for T1HX . Each one has 
its advantages and disadvantages. The first model is an 
attempt to decrease the proton diffusion in the vicinity 
of the muon, yet allow the muon to jump to nearest-neigh­
bor sites. However, an increased activation energy to 
explain the binding of the nearest-neighbor protons was 
not measured. The second model postulates that it is 
energetically favorable to have a vacancy at a second- 
nearest-neighbor site as opposed to a first-nearest-neigh- 
bor site and that the muon moves by a thermally-activated 
tunneling mechanism. The flaws with this theory are that 
the values obtained from the data for the tunneling matrix 
element and the activation energy are very large. However, 
the large value for J should not discount this theory 
since substantial values have been observed in other FCC 
metals contrary to theoretical expectations.

B. Vttrium Hydride
The temperature dependence of the depolarization 

rate, A ,  for the yttrium hydride samples is shown in Fig.
7.10. As was the case for titanium hydride, the data shown 
here can be divided into four different regions.

The line width for muon occupancy of the 0 and T 
sites may be calculated using the Van Vleck formula
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Figure 7.io
The depolarization rate, a, in yttrium hydride as function 
of temperature for YHi 7 7  (open squares} and YH2 (open 
triangles}„ The dashed lines correspond to the depolar­
ization rate for a muon in an octahedral site (upper line) 
and a tetrahedral site (lower line) of an undistorted 
lattice.
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(Eqn. 7.1) coupled with an allowance for the reduction of 
the fourth moment as mentioned previously (section 
7,lA. 1) . Using a value for the lattice parameter of 5.Z04 
A,43 the line widths for 0 and T site occupancy with no 
local distortion are 0.166 *is-1 and 0.120 ^s"1, respec­
tively ,
1, Region I

Fig. 7.10 shows an increase in the value of the depo­
larization rate as the concentration is decreased for 
T < 300 K. This is considerably different from that for 
TiHx . This can be explained by allowing a greater per­
centage of O sites to be occupied by protons as the 
hydrogen concentration is increased. The occupation of O 
sites by protons has been observed by neutron diffrac­
tion56 and proton second moment measurements with NMR57 
and Is shown in Table 7.6.

Table 7.6
Percentage of occupied octahedral sites in yttrium hydride 
as a function of hydrogen concentration and temperature as 
measured by neutron scattering56 and NMR.57

H/Y Percentaae of Occupied 0 Sites Temperature(K)
1.9056 12(6) 11
1.9S56 14(3) 300
1.9857 16(3) 160 and 200
1.9257 11(2) 160 and 200
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The experimental results for a can be fit to a model 

in which a probability for occupancy of a T site by the 
muon is calculated. The probability that a muon, shortly 
after stopping in an 0 site, transfers to a T site is 
equal to the probability that a nearest-neighbor tetra- 
hedral site to the octahedral site is vacant. Thus, if Ft 
is the probability that a T site is vacant and P$ is the 
probability that the muon is in a T site (and is e- 
guivalent to P for TiHx ), one has

Fft - 8Ft  (7.18a)

AEXP "  BPT * t ET + < 1 - B P ? ) A0CT* ( 7 . 1 8 b )

For H/Y-2, Pt «P^/2 where p£ is the probability for an 0 
site to be occupied by a proton. Since the ratio of unit 
cell volumes between yttrium hydride and titanium hydride 
is 1.6, then the distortion of the lattice for a muon in 
an 0 site should be very small. Using the unexpanded 
lattice calculated values for the line width for both 
sites, the probability for occupancy of T sites is shown 
in Table 7.7.
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Table 7.7

Percentage of tetrahedral sites occupied by muons (F^pxloO) 
in yttrium hydride as a function of temperature and 
hydrogen concentration. The percentage of 0 sites occupied 
by hydrogen is poxi 0 0 .

H/Y P$xl00 P^x1 0 0

1.77 0,171(2) 3.3(4) -
2 . 0 0 (T>50K) 0,153(2) 6.9(4) 13.8(8)
2 . 0 0 (T<5QK) 0.171(3) 3.3(4) 6 ,6 (8 )

The percentage of 0 sites occupied by hydrogen for 
YHj above 50 X, as determined by m SR agrees, with the 
results from neutron scattering. A new equilibrium in the 
ratio of occupied O to T sites is observed by the change 
(near 50 K) in the percentage of protons occupying O site 
and appears to be stable until room temperature is 
reached.

The mixed phase sample, YH 1 .7 7 , is comprised of many 
small regions where the lattice structure is either HCP 
(k) or FCC (5). The « phase, which has a lattice constant 
of 3,65 A, can contain up to a H/Y ratio of 0.15 at room 
temperature ,5 0  The volume available for muon occupancy in 
a T site in the <x phase is less than 30% of that for a 
muon in an 0 site in the 8  phase. Therefore, one can 
postulate that the muon chooses to occupy sites in the 8  

phase of the material (which is 90% of this material and
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has an average H/Y - 1.93). Since the vacancy concentra­
tion In the & phase of this material is approximately 3.5% 
and 3.3(4)% of the T sites are vacant (as determined from 
nSR linewidths}, it appears that there are no protons In 
the octahedral sites of this phase.

2. Region 11
A region of transition to a lower height plateau for 

the depolarization rate in YHl p 7 7  is observed in Fig. 7 ,io 
and commences at approximately 2 70 K, This is associated 
with the muons activating out of O sites. The occurrence 
of this at a much higher temperature than for TiHi.gs, 
shown in Fig. 7.6 (200 K) , reflects the difference in the 
structure of the materials. TlH^,g3 is a single phase 
material with the H atoms not occupying O sites and the 
vacancies randomly distributed among the T sitesr whereas, 

1 . 7 7  is a mixture of « (which does not have room for the 
muon) and fi phases. The fi phase of this material has a 
nominal H/Y ratio at 17 5 K of approximately 1 . 9 3  with the 
hydrogen atoms occupying T sites. Further, muon occupancy 
of the 0  site causes little or no local lattice dilation 
which means that the attractive force between the muon in 
an O site and a second-nearest-neighbor vacancy is smaller 
than in the titanium hydride system. These two distinc­
tions cause the transition region for YH 1 < 7 7  to occur at 
higher temperatures than for titanium hydride of a similar 
concentration. Presumably the YH2 would have shown signs
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of 'transition to T site occupancy slightly above room 
temperature if the measurements had been carried out.

3. Region III
The constant value for the depolarization rate, A, in 

Fig. 7.10 above 3 00 K indicates that the muon is trapped. 
The average value of a in this region is 0.116(2) ^s"1. 
This agrees with the calculated unexpanded lattice value 
of 0.120 /is-1 for T site occupation. The reason why there 
is no local lattice dilation is that this lattice is more 
spacious than TiHx . Therefore, the muon's zero point 
motion does not cause a repulsion of the local hydrogen 
atoms.

4. Region IV
Motional narrowing of the muon line width is observed 

at high temperatures (Fig. 7.10). Similar behavior was 
also observed for TiHx and was due to the motion of muons 
and possibly hydrogen atoms. Fig. 7.11 shows the values of 
t from a fit to an Abragamian form for Gx (t). These cor­
relation times can then be fit to an Arrhenius form to 
obtain an activation energy.

r -  t Q e x p ( E a / k T )  ( 7 . 1 9 )

A fit to this form yields 4{±2) * lo“4 |ib and 0.44(8) eV 
for r0 and Ea , respectively. T j p measurements have been
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Figure 7.11
Muon fieid-correlation time plotted as a function of 
temperature for 7 7 . The line is a least squares fit to
Eqn. 7.19.
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performed on by Anderson efc al.59 Their results
have been analyzed using a from similar to Eqn. 7.19 over 
three different temperature ranges yielding three dif­
ferent activation energies and are reported in Table 7.9.

Table 7.8
Prefactor and activation energies for proton correlation 
times obtained from T lp measurements.5*

Temperature region r o i i t S l E a feV>
T < 465 K 2 . 2  x  1 0 “ 3 0.457

465 K < T < 600 K 6.9 x  10"8 0.877
T > 600 K 9.4 x  10-10 1 . 1

Their interpretation of the three regions of increasing 
activation energy with increasing temperature is motion 
between 0 sites for the lowest Ea , exchange between T- and 
O-site hydrogen atoms, and motion of all hydrogen atoms on 
both sublatticee. However, this interpretation may be 
suspect since they were not able to determine the proton o 
and T site populations with proton second moment measure­
ments. The activation energy observed for muons is close 
to that observed for 0 site hydrogens which might imply 
that the muon's field-correlation time is somehow deter­
mined by the motion of these protons. However, this is 
unlikely, because the values for rQ and £a for YHl i 7 7 are



on the same order as those for TiHx for which hydrogen 
atoms do not occupy 0 sites. Secondly, the uncertainties 
In r0 and Ea are quite large. Further, our results for 
YHi . 7 7  indicate that protons do not occupy O sites. There­
fore, detailed conclusions are premature.

C. Zirconium Hydride
Zirconium hydride has been studied previously with 

pSR. Doyama et al,33 reported the depolarization rate for 
samples with H/Zr ratios of 1.54, 1.9a, and 1.99 and 
T > 273 K (Fig. 7.12). They also have reported an activa­
tion energy and a prefactor for the jump frequency for the 
muon which is lower than the proton activation energy and 
attempt frequency obtained from NMR. The studies reported 
here are for for T < 300 K (Fig* 7,13).

For T s 100 K, the average value for the depolariza­
tion rate is 0.199(2) ^s"1. Doyama et al.33 measured a 
value for the depolarization rate in Z rH^^Q and ZrHj^gg 
for T-300 K which corresponds to a A of 0.15 ^s-1. This 
agrees reasonably well with the calculated value for the 
line width of 0.155 n s""i for a muon in a T site with no 
lattice expansion. Since zirconium and titanium hydrides 
are very similar, one can assume a model similar to the 
one postulated for the depolarization rate in TiHx at low 
temperatures.
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Figure 7.12 (Doyama et al.33) _
The zero-field depolarization rate, £z ( = a^5) , as a 
function of temperature for ZrH-i oo, ZrHi Q0r and JrHi cfi. 
The data was fit to Eqn. 5.32 With j - a.'
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Figure 7.13
The depolarization rate, /v, as a function of temperature 
for ZrHi.g^. The dashed lines correspond to the depolar­
ization rate for a muon in an octahedral site (upper line) 
and a tetrahedral site (lower line} with no local 
distortion.
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(7.20b)

If one assumes that the depolarization rate, A, determined 
from the data of Doyama et al . 2 9  (for ZrH1.90 and ZrH1.99 
at 300 K) is equal to A(rET ( ° - 1 5  ms_1) ari1* that the 
depolarization rate for ZrH^tg4 (T 5 100 K) is substituted 
for A gyp, then the value of Aqct 0*21(2) The
value of A for a muon in an O site and no local distortion 
is 0.237 fjs-1. A lattice expansion of 4(4)% is necessary 
to explain the disagreement between these two values for 
Aoct and compatible with the 6 (1 )% expansion for 
titanium hydride.

The depolarization rate for T > 150 K is slightly 
lower than that for T s 100 K (Fig. 7.13). For TiHx , an 
attractive force for a vacancy to move to a nearest-neigh­
bor T site to the muon was postulated to explain the 
decrease in the depolarization rate near 200 K for x-1.83. 
The motion of the vacancy to a nearest-neighbor T site is 
possible, because two or three of the second-nearest- 
neighbor sites can be vacant. Whereas for x-1.97 and 1,99, 
the probability for a vacant second-nearest-neighbor site 
is very small which means that the muon is trapped in the 
0  site. ZrH l i 9 4 is a good example of what occurs when the 
hydrogen concentration is in between these two extremes. 
For this concentration, there may be one nearest-neighbor 
or second-nearest-neighbor vacancy. This is reflected by 
the decrease in the depolarization rate around 2 00 K. If
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the experiments vere to be continued to a higher tempera­
ture one should see a decrease to a slightly (not much) 
lower value of the depolarization rate. This decrease in 
depolarization rate has been seen by Doyama et al . 2 2  They 
found muon T site occupancy at 280 K and 3 30 K for ZrHj^gQ 
and ZrHi.9 9 , respectively (Fig. 7.12). Since not all the 
muons have activated out of an O site by room temperature 
for ZrHl i 9 4  (but have for ZrH^go), the postulated attrac­
tive force between a muon and a second-nearest-naighbor 
vacancy can be said to be observed only for vacancy con­
centrations in excess of 3%.

D. Lanthanum Hydride
Fig. 7.14 shows the muon spin depolarization rate as 

a function of temperature for LaHj^oe* The site determina­
tion of the muon is complicated by the presence of the 
dipole (2.78 fjjj) and quadrupole (0.2 20 barns) moments for 
the lanthanum nuclei which possess a spin of 7A/2 . 6 0  The 
theoretical second moment is the sum of the contributions 
from the lanthanum and hydrogen nuclei. The Van Vleck 
formula (Egn. 7,1) can be used to calculate the contribu­
tions to the muon second moment from both nuclei in the 
Zeeman limit. Upon performing this calculation, one finds 
that the line widths for muon occupancy of O and T sites 
is 0.163 ^s" 1 and 0.124 respectively. However, the
quadrupole moment for lanthanum is large which means that 
150 Gauss is probably not sufficient to achieve the Zeeman
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Figure 7,14
The depolarization rate, a , as a function of temperature 
for LaH2 .06*
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limit* Instead of using Eqn, 7,1 to calculate the lan­
thanum contribution to the second moment, one must use 
Eqn. 5.16. Upon doing this, one finds that the line widths 
for muon occupancy of o and T sites is 0.193 and
0.179 /is”1, respectively. If 150 Gauss is not sufficient 
to quench the quadrupole interaction, then the site of the 
muon cannot be determined since the precision of our 
measurements is of the same order as the difference bet­
ween line widths for both sites. However, one can postu­
late that the muon occupies 0 sites since the hydrogen 
atoms reside predominately in T sites. If one assumes 
this, then the experimentally observed line width yields a 
local lattice expansion of 3.B(5)% in the Zeeman limit and 
7 .9 {5) % in the quadrupolar limit. Both of these are rea­
sonable numbers for local lattice dilation for a muon 
occupying an O site.

As for TlHli9g, LaH2 ,ofi ^as ari extremely small number 
of vacant T sites. Therefore, one expects to observe 
motional narrowing of the line width if the muon is ac­
tivating out of an O site and trying to find a T site. 
Since there is no motional narrowing of the muon line 
width, one can conclude that the muon is trapped.

7.2 ZERO-FIELD STUDIES
As was mentioned in Chapter 5, zero-field juSR has 

been a valuable technique for measuring internal fields 
and for measuring slow diffusion of the muon. In this
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section, the zero-field #jSR studies of TiHx and YH2 are 
reported. Since the hydrogen atoms are the only nuclei 
with a sizeable magnetic moment, the results are a measure 
of the spin dynamics of the proton for temperatures where 
no muon or proton motion is expected.

A. Titanium Hydride
Fig. 7.15a-c shows the muon polarization as a func­

tion of time for TiHli99, TiHli97, and TiHli8j at 100 K.
At this temperature, the muon is expected to be trapped 
and was observed to be by the transverse-field studies.
One important feature of these three figures is the oscil­
lation of the polarization at long times. This oscillation 
at long time disagrees with Kubo-Toyabe theory which 
predicts the polarization to approach 1/3 at long times 
for a static muon,29 A calculation of the muon polariza­
tion in an O site which is coupled to the spins of the 
eight nearest-neighbor protons is shown in Fig. 7,l5a-b.61 
The energy levels of the eigenstates were determined by 
diagonalizing the Hamiltonian with the proton-proton 
dipolar Interaction included as a perturbation (see Appen­
dix D). The results of this calculation give a better fit 
than Kubo-Toyabe theory for the muon polarization of a 
static muon for TiHi.gg. The fit to the polarization for 
x»1.97 is not quite as good, but this is to be expected 
since the minimum is slightly shifted and filled in by the 
12% of muons occupying T sites. Ho attempt was made to
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Figure 7.15a
Experimentally-determined zero-field muon polarization as 
a function of time for TiHlta9 at 100 K, The curve ie a 
theoretical calculation of the relaxation function for a 
muon in an octahedral site (see Appendix D),61
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Figure 7.15b
Experimentally-determined zero-field muon polarization as 
a function of time for T i H j o 7 at 100 K. The curve is a 
theoretical calculation of the relaxation function for a 
muon in an octahedral site (see Appendix D).
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Figure 7,15c
Experimentally-determined zero-field muon polarization as
a function of time for TiHlta3 at 100 K.
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Figure 7.15d
Experimentally-determined zero-field muon polarization as 
a function of time for TiHli03 at 305 K, The curve ie a 
theoretical calculation of the relaxation function for a 
muon in an tetrahedral site (see Appendix D).
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compare this calculation with the x-1.8 3 cose since almost 
70% of the muons are in tetrahedral sitae. This is evi­
denced by the filling in and shift of the minimum and the 
damping of the recovery hump.

Since the position of the minimum in time of the 
relaxation function is Independent of model (Fig. 5.5), 
the time derivative of Eqn. 5.32 can be used to calculate 
the zero-field depolarization rate, a z.

The minimum of this function occurs at At«/3. The depolar­
ization rate, thus, equals yVtjnin'

The zero-field depolarization rate, ^zcal' can ^e 
calculated using a form similar to Eqn. 7.3.

The zero-field depolarization rate for a muon occupying a 
tetrahedral eite (octahedral) site is equal to Ajet 
(Aqct)t which was obtained in section 7.1A.1, multiplied 
by 75 yielding a value of 0.385(11) ^s-1 (0.563(7) jjs’1) . 
Table 7.9 shows the results of both calculations of the 
zero-fleld depolarization rate for all three hydrogen con 
centrations.

G a (t) - 1/3 + 2/3(l-A2t2)exp(-A|t2/2}, (5,32)

ATETP + i0CT^1”P '̂ (7.21a)
P - 8(l—x/2) (7.21b)
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Table 7.9

tm in , the zero-field depolarization rate, and the calcu­
lated zero-field depolarization rate as a function of 
hydrogen concentration in titanium hydride at 100 K.

X tminC^s) fijj (m s -1) Ajcait/iS"1)
1.99 3.2(1) 0.54(2 ) 0.557(7)
1.97 3.3(1) 0.52(2) 0.545(7)

■ 00 LJ 4.1(1) 0.42(1) 0.450(9)

The agreement between the calculated and the measured 
zero-field depolarization rates is good.

The spin-spin relaxation time for a nearest-neighbor 
proton can be estimated from the zero-field /*SR data.50 
Using the curves of Fig. 5.4b, the value of fir for x-1.99 
is estimated to be approximately 4. If fi-0.54 ^s”1 , then r 
- 7.5 îa and is the field-correlation time due the 
dynamics of the proton spins.

The calculation of the proton second moment in zero- 
field involves calculating the second derivative of the 
relaxation function using a dipolar Hamiltonian (Appendix 
E) . The second moment for a nearest-neighbor proton con­
tains contributions from the lattice of hydrogen atoms and 
the nearest-neighbor muon. The muon in this case is an 
interstitial in a SC lattice. The second moment is calcu­
lated to be 0,103 fis-2. If the line width is Gaussian,
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then the epin-epin relaxation time is 4.4 jis. This result 
is within a factor of two of the estimated result from the 
zero-fieId experiment. The agreement is surprisingly good 
despite the lack of coupling between the muon and the 
lattice of protons.

Fig. 7.15d shows the results for TiHi _|$3 at 305 K, 
This temperature was chosen because the transverse-field 
results indicate that the muon is trapped in a T site 
(Fig. 7.6). Once again, the polarization shows oscilla­
tions at long times which is not characteristic of Kubo- 
Toyabe depolarization function for a static muon. A cal­
culation of the polarization for a muon in a substitution­
al site of a SC lattice was performed.51 This calculation 
was similar to the one for an interstitial muon in a SC 
lattice with the exception that there were six nearest- 
neighbor hydrogen atoms. The calculated muon polarization 
is shown in Fig, 7.15d (Appendix D). This calculation fits 
the experimentally measured polarization better than Kubo- 
Toyabe theory for a static muon. The discrepancy between 
the calculated and measured polarizations may be due to 
the lack of proton-proton coupling which could not be 
included in these calculations.

The minimum in the polarization occurs at 4,3(1) ^s. 
This corresponds to a zero-field depolarization rate of 
0.403(9)#js_1 . The calculated zero-field depolarization 
rate for a muon in a T site is 0.385(11) ^e-1. The agree-
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ment between these two Is good and helps confirm that the 
muon is in a T site.

The calculation of the proton spin-spin relaxation 
time with a muon in a T site is Himilar to that for a muon 
in an 0 site. The major difference is that the contribu­
tion of the muon to the second moment will be smaller 
since it is farther away from the proton. The calculated 
second moment is 0.0714 ^s"2 . If the line width is Gaus­
sian, then the spin-spln relaxation time is 5.3 jus. Using 
the curves in Fig. 5.4b, the estimated value for ir for 
the muon polarization in Fig. 7.15d is approximately 2. 
since fi-0.40 fis"1 , then * - 5 jus. This is in good agree­
ment with the calculated spin-spin relaxation time of
5,3 fiS,

B. Yttrium Hydride
Fig. 7.16a-b shows the zero-field muon polarization 

for YH2 at 20 K and 295 K. Since the polarization was not 
measured at long times, the comparison to the calculated 
polarization and the calculation of the proton spin-spin 
relaxation time (as was done for TiHx) is not possible.
The line widths obtained from zero-field (Ax - a z / J S )  and 
transverse-field studies (Axt) can b® compared (Table 
7,10), The agreement between the two techniques is good, 
but experiments should be performed with an emphasis on 
long-time behavior of G£ (t).
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Figure 7.16a
Experimentally-determined zero-field muon polarization as
a function of time for at 20 K.
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Figure 7.16b
Experimentally-determined zero-field muon polarization as
a function of time for YH2 at and 295 K.
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Tab18 7.10

traint the zero-field depolarization rate ,calculated 
transverse-field line width from zero-field depolarization 
rate, and experimentally measured transveroe-field line 
width ae a function of temperature in yttrium hydride.

T(K) tmin(^8) (MS-1) Ax t ^ B_1)
20 4.2(1) 0.41(1) 0.184(4} 0.170(5)

295 5.2(1) 0.33(1) 0.149(3) 0.149(6)

7.3 LONGITUDINAL-FIELD STUDIES
The longitudinal-field juSR technique was applied to 

the TiHi^ 9 7  sample at 1 0 0  K and approximately eight gauss. 
Fig. 7.17 shows the muon polarization for this field and 
Indicates that the fluctuation rate for internal fields is 
less than 100 KHz (Fig. 5.7). The solid line Is a fit of 
the data to Eqn. 5.40 out to approximately four micro­
seconds since the decay of the muon polarization is an 
Indication of a finite field-correlation time (due to the 
spin dynamics of the proton) . The frequency obtained from 
the fit, u“0 .673(2) MHz, corresponds to a field of 7.9 g 
which is in agreement with the Known value of the applied 
field. The value for the depolarization rate obtained from 
the fit, ^2^0.46(2) ms-1, is in agreement with the value 
reported in Table 7.9 of 0.52(2} ^s"1. As was the case in
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zero-field, Kubo-Toyabe theory for a static muon fails to 
describe the data at long time. For long times, the 
decrease in the polarization can be described by exp(- 
t/r). This decay time has been estimated to be of the 
order of ten microseconds. This yields a value of ir on 
the order of 5 which agrees with the estimate from the 
zero-field data for TiHi.gg of at - 4.
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Figure 7.17
Experimental1/-determined longitudinal-field muon polar­
ization as a function of time for TiHj_ 9 7 at 100 K and 7,9 
G. The curve is a least squares fit out to four micro­
seconds to Eqn, 5.40,



CONCLUSION

The spin dynamics of protons have been seen to have a 
significant effect upon the fields felt by the muon. This 
was observed In the oscillation of the zero- and low lon- 
gitudinal-field muon polarizations at long times with a 
damping due to the dynamics of the proton spins. Secondly, 
the narrowing of the transverse-field gaussian line widths 
by approximately 5% is evidence of the significance of the 
proton spin-spin interactions.

The diffusion and sites of muons in titanium hydride 
are dependent upon hydrogen concentration and temperature. 
For low temperatures and high hydrogen concentrations, the 
majority of the muons occupy octahedral sites with the 
probability for T-site occupancy equal to the probability 
that any of the nearest-neighbor tetrahedral sites to an 0 
site are vacant. For low vacancy concentrations (x-1.97 
and 1.99}, the O-site muons activate out of these sites 
(activation energy and prafactor equal to 0,4B(B) eV and

respectively) indicating that the vibration of 
the hydrogen lattice is responsible for this process. For 
higher vacancy concentrations (x=l.B3), an attractive 
force between the muon and vacancies at second-nearest- 
neighbor sites enables these vacancies to move to the

160
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nearest-neighbor site# and allow the muon to jump to the T 
site. This force arises from the 6(1)% local hydrogen 
lattice dilation around the O-slte muon. Near room temper­
ature the muon occupies a tetrahedral site and distorts 
the hydrogen lattice by 3(1)%. At high temperatures (-500 
K ) , the muon field-correlation time Is greater than the 
proton diffusion time. Monte Carlo simulations indicate 
that the field-correlation time for a stationary muon 
equals the proton diffusion time. Therefore, the nearest- 
neighbor hydrogen atoms must be bound to their sites to 
increase the muon fiald-correlation time to explain the 
data. The usual binding mechanism is to Increase their 
activation energy. However, the results from a fit to an 
Arrhenius expression to the field-correlation time show a 
decreased activation energy. In an attempt to explain this 
disagreement, the muon is postulated to tunnel to a 
second-nearest-neighbor site with the nearest-neighbor 
hydrogen atoms bound to their sites. However, the values 
for the tunneling matrix element and the distortion of the 
nearest-neighbor titanium atoms are too large. The dis­
covery from the Monte Carlo simulations that the field- 
correlation time for a stationary muon is less than that 
measured in the experiments is significant. The study of a 
few more compounds, such as TiHli7 and TiHi.g, would be 
beneficial to the development of a model to explain the 
high temperature muon field-correlation times.
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The results of ^SR studies of yttrium hydride are 

qualitatively similar to those of titanium hydride. This 
is evidenced by the low prefactor and activation energy 
for the muon field-correlation time as compared to the 
proton diffusion time at high temperatures. Secondly, the 
muon occupies tetrahedral sites near room temperature and 
predominately 0 sites below room temperature. However, one 
striking difference between the results for titanium and 
yttrium hydrides is that the probability for muon T-site 
occupancy increases with hydrogen concentration for YHX . 
This is thought to be due to an Increase in the number of 
protons occupying O sites as H/Y approaches two. Secondly, 
no dilation of the local hydrogen lattice is observed. 
Future work on other yttrium hydride compounds should 
initially be confined to the high temperature regime to 
confirm the similarities in results to those of titanium 
hydride. Secondly, a study of the muon depolarization rate 
below room temperature should be conducted to observe in 
more detail the percentage of octahedral site protons as a 
function of hydrogen concentration.

The results of ^SR studies of zirconium hydride agree 
qualitatively with the previous results of Doyama et al,33 
(and with those of TiH^}. As for TiHx , the muon predom­
inately occupies octahedral sites with a trapping radius 
that includes the eight nearest-neighbor T sites. Further 
work on other zirconium hydride compounds is necessary to 
lower the uncertainty in the calculated local lattice
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dilation due to a muon in an octahedral site. Secondly, 
studies to complement those of Doyama et al.33, combined 
with those for titanium hydride, would contribute to the 
development of a model to explain the high temperature 
muon field-correlation time.

The results of /jSR studies of lanthanum hydride 
indicate that the muon is stationary- This is evidenced by 
the lack of a minima in the depolarization rate as a 
function of temperature as was seen for TiH^gg. The muon 
site is probably an octahedral site since the tetrahedral 
sites are occupied by protons. However, a study of the 
depolarization rate as a function of applied magnetic 
field would substantiate this hypothesis.



APPENDIX A
COMPUTER PROGRAM FOR SIMULATION OF MOTION ON A CUBIC LATTICE

C
C PROGRAM TO MATCH THE MOVEMENT OF 7 VACANCIES IN A 
C LATTICE OF 729 LOCATIONS AND THEIR EFFECT UPON 
C THE MAGNETIC FIELD FELT BY THE MUON. THE MUON
C STARTS AT (0,0,0) WITH INDUCED PROBABILITIES
C FOR NN AND NEXT NN MOVEMENT
C
C USING THE IMSL SUBROUTINE GGUBS AND FUNCTION 
C ROUTINE GGUBFS TO GENERATE RANDOM NUMBERS. BOTH
C OF THESE ARE PSEUDO-RANDOM NUMBER GENERATORS
C 
C
C SPIN(X,Y,Z,N> IS THE COMPONENT OF THE SPIN AT 
C LATTICE POSITION (X,Y,Z) IN THE X(N-l), Y(N«2),
C AND Z(N-3) DIRECTION 
C
C IV(N,M) IS THE ARRAY WHICH STORES THE POSITION OF 
C THE VACANCIES.
C N LABELS THE VACANCY AND M DEFINES THE LATTICE 
C LOCATION; X(M-l) ,Y(M«2), Z(M-3).
C
C NTRY(N) IS THE ARRAY WHICH KEEPS TRACK OF THE 
C DIRECTIONS A VACANCY HAS ATTEMPTED. IF A VACANCY 
C CANNOT MOVE IN A PARTICULAR DIRECTION, THEN THE 
C VALUE IN THE ARRAY ASSOCIATED WITH THAT DIRECTION 
C IS SET-1. IF ALL VALUES IN THE ARRAY ARE 1 THEN 
C THE VACANCY CANNOT MOVE.
C
C NN(N,M) DEFINES THE NEAREST NEIGHBORS(N-l TO 6)
C AND THEIR POSITIONS (M-I TO 3).
C
C MARK{X,Y,Z) IS THE ARRAY WHICH KEEPS TRACK OF 
C WHICH LATTICE LOCATIONS HAVE BEEN THE SIGHT OF 
C MOVEMENTS 
C
C MPOS(3) IS THE ARRAY WHICH KEEPS TRACK OF THE 
C MUON'S POSITION.
C
C ARRAY(3) IS THE ARRAY WHICH IS USED FOR THE RANDOM 
C NUMBER GENERATOR.
C
C B AND BN ARE THE MAGNETIC FIELD IN THREE
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C DIRECTIONS DUE TO THE NUCLEAR SPINS.
C
C BX IS THE UNIT VECTOR IN THREE DIRECTIONS OF THE 
C EXTERNAL MAGNETIC FIELD.
C
C NCHECK(0:3000,7) IS THE ARRAY WHICH KEEPS TRACK OF 
C WHICH VACANCY IS A NEAREST NEIGHBOR OF THE MUON 
C
C CLOCK IS A SUBROUTINE IN THE VFORTLIB WHICH READS 
C THE TIME OF DAY IN UNITS OF 1/300 SECOND AND 
C RETURNS IT AS A INTEGER*4 VARIABLE.
C
C VZERO{ARRAY,N O .OF ELEMENTS) IS A SUBROUTINE WHICH 
C ZEROS THE NO. OF ELEMENTS IN AN ARRAY ASSUMING IT 

IS AN INTEGER*4 OR REAL*4 ARRAY.
COMMON /S/SPIN{ -4 i 4 , -4 : 4 , -4 : 4 , 3)
COMMON /MUON/MPOS(3)
INTEGER IV(7,3),NTRY( 6 ) ,NN(6,3),

1 MARK(“4 ;4t-4:4,-4 i 4) , IVAC(7,2) ,NNVAC(7)
REAL ARRAY(3),B X {3)(B (3),BN(3)
INTEGER*2 NCHECK(0!3000,7)
REAL*8 DSEED
DATA P,MNN,KMFQS,KNPOSl,MNPOS2r 

1 MNPOS3/0 . 33 , 5*0/
DATA NN/1,-1,6*0,1,-1,6*0,1,-1/
DATA NCHECK/21007*0/

C SET THE VALUE FOR PPRIME 
PPRIME-0.0 

C SET THE VALUE FOR PIN 
PIN-1./IS.

C SET THE VALUE FOR POUT 
POUT-1./1B00.

C SET THE VALUE FOR P 
P-l./lB.

C READ TIME TO SEED THE RANDOM NUMBER GENERATOR 
CALL CLOCK(ITIME)
WRITE(6,1000) ITIME 

1000 FORMAT{IX,1TIME OF DAY FOR SEED-',I10)
DSEED— DFLOAT(ITIME)
CALL VZERO(KPOS,3)

C PICK THETA AND PHI TO DETERMINE THE FIELD 
C DIRECTION THETA IS CHOSEN PROBABILITY OF THETA 
C NEAR PI/2 LARGER

CALL GGUBS(DSEED,3,ARRAY)
PI-2.0*ACOS(0.0)
TH—1* 0-ARRAY(1)
THETA-ACOS(TH)

C IF ARRAY (3) > 0 . 5  THEN THETA WILL RUN FROM PI/2 TO 
C PI

IF(ARRAY(3),GT.0.5) THEN 
THETA-PI-THETA

ENDIF
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PHI-ARRAY(2)*2.* PI 

C CALCULATE THE FIELD DIRECTION 
X-SIN(THETA)*COS(PHI)
Y-SIN (THETA)*SIN(PHI)
Z-COS(THETA)
BX(1)-X 
BX(2)-Y 
BX(3)“Z
WRITE(6,1001) X, Y , Z

1001 FORMAT(IX,'FIELD DIRECTION-(■,
1 2<F7.4, \  '),F7.4, ') ')

C PICK SPINS FOR EACH LATTICE POINT EXCEPT FOR THE 
C MUON.

DO 100 1— 4,4 
DO 101 J— 4,4 
DO 102 K—  4,4
IF(I.EQ.O.AND.J.EQ.0.AND.K.EQ.0) THEN 

GOTO 102 
ENDIF

C QUANTIZE THE SPINS OF THE PROTONS PARALLEL OR 
C ANTIPARALLEL TO THE APPLIED MAGNETIC FIELD 

CALL GGUBS(DSEED,1,ARR)
IF(ARR.GT.0.5) THEN

SPIN(I,J , K,1}-X 
SPIN(I , J , K , 2}—Y 
SPIN(I, J , K, 3}-2

ELSE
SPIN(IrJ ,K r1)—-X 
SPIN(I,J,K,2)— Y 
SPIN(I,J,K,3)— Z

ENDIF 
102 CONTINUE 
101 CONTINUE 
100 CONTINUE

WRITE(6,1002)
1002 FORMAT(18X,'INITIAL*)

WRITE(6,1003)
1003 FORMAT(IX, 1 VACANCY NO. IX, 1 LOCATION(X,Y,Z ) 1) 

C PICK LOCATION OF THE 7 VACANCIES
DO 103 1-1,7 

10 CALL GGUBS(DSEED,3 rARRAY)
DO 104 J-1,3 
JV1—9.0*ARRAY(J)
IV{I ,J)-JV1-4 

104 CONTINUE
C CHECK TO SEE WHETHER THE VACANCY IS AT THE MUON'S 
C INITIAL LOCATION, IF SO GO BACK AND PICK A NEW 
C LOCATION

IF(IV(1,1).EQ.0,AND.IV(1,2).EQ.O 
1 .AND.IV(I,3).EQ.O) GOTO 10 

C IF 1-1 THEN THE DO LOOP WITH VARIABLE K WILL HAVE 
C A PROBLEM WITH DO 105 K-l,0J THEREFORE SKIP OVER 
C THIS DO LOOP
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IF(I.EQ.l) GOTO 11 

C CHECK TO SEE WHETHER THERE ARE TWO VACANCIES AT 
C ONE SPOT

DO 105 K-1,I-1
IF (IV(I r1).EQ.IV(K, 1}-AND.IV(I ,2).EQ.IV(K,2)

1 .AND.IV(I,3).EQ,IV(K,3)) THEN 
GOTO 10 

ENDIF
105 CONTINUE

C SET SPIN OF VACANCY-0 IN ALL 3 DIRECTIONS 
11 DO 106 K-1,3

SPIN(IV(1,1),IV(I,2),IV(I,3),K)-0.0
106 CONTINUE

C WRITE INITIAL LOCATION OF VACANCIES 
WRITE(6,1004) I,(IV(I,J),J-1,3)

1004 FORMAT(2X,I4,9X,3(I4))
DO 107 LP-1,6

C CHECK TO SEE WHETHER ANY OF THE VACANCIES ARE 
C KUON'S NN

IF(IV(1,1).EQ.NN(LP,1).AND.IV(I,2),EQ.NN(LP,2) 
1 .AND.IV(I,3).EQ.NN(LP,3)) THEN 

MNW—MNN+1 
NCHECK(0,I)-l 

WRITE(6,1005)
1005 FORMAT('+',28X,* IS A NN OF THE MUON') 

ENDIF
107 CONTINUE 
103 CONTINUE

C CALCULATE THE DIPOLAR MAGNETIC FIELD INDUCED BY 
C THE NEIGHBORING PROTONS 

CALL BCAL(B)
BOB—8(1)*BX(l)+8f2)*BX{2)+B(3)*BX(3)

C BOB- DOT PRODUCT OF THE MAGNETIC FIELD WITH THE 
C UNIT VECTOR OF THE EXTERNAL MAGNETIC FIELD 
C START TO LET VACANCIES MOVE 

FC-1.0 
1-0
WRITE(2,1016) BOB,FC,I, MNN 
DO 10S 1-1,3000 

C SET ALL STORAGE SPACES IN THE ARRAY WHICH KEEPS 
C TRACK OF WHAT LATTICE SITES HAVE MOVED DURING ITH 
C TIME INTERVAL TO ZERO

CALL VZERO(MARK,72 9)
C SET THE MARKER WHICH KEEPS TRACK OF WHETHER A 
C VACANCY IS A NEXT NEAREST NEIGHBOR TO THE KUON TO
C ZERO FOR THE ITH TIME INTERVAL

CALL VZERO(IVAC,14)
C SET THE MARKER WHICH KEEPS TRACK OF WHETHER A 
C VACANCY IS A NEAREST NEIGHBOR TO THE MUON TO
C ZERO FOR THE ITH TIME INTERVAL.

CALL VZERO(NNVAC,7)
C SET THE MARKER FOR THE VACANCIES SO THAT THERE ARE 
C NO VACANCY-VACANCY SWITCHES
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DO 115 IK-1,7
MARK{IV(IK,1),IV(IK,2)(IV(IK,3))-1 

115 CONTINUE
DO 109 J-1,7 

C JX, JY, JZ ARE TEMPORARY SPOTS TO STORE THE 
C ORIGINAL SITE OF THE VACANCY J JX STORES X 
C COMPONENT; JY STORES Y J JZ STORES Z 

JX-IV(J,1)
JY— IV{J , 2 )
JZ-IV(J,3)

C SET ALL STORAGE SPOTS OF THE ARRAY WHICH KEEPS 
C TRACK OF THE DIRECTIONS WHICH A VACANCY HAS 
C ATTEMPTED TO MOVE TO ZERO 

CALL VZERO(NTRY,6)
C J1 IS THE INDEX USED IN ARRAY IVAC TO DEFINE 
C WHETHER THE VACANCY HAS ONE OR TWO KUON NEAR 
C NEIGHBOR SITES NEXT TO IT.

Jl-1
C STEP THROUGH THE MUON NEAR NEIGHBORS TO FIND THE 
C DISTANCE TO THE VACANCY,

DO 118 J2—1,6 
C STEP THROUGH THE THREE DIRECTIONS OR ARRAY 
C POSITIONS OF EACH NN 

R2-0.O
DO 119 J3-l,3 

C CALCULATE THE DISTANCE BETWEEN THE J2TH NN AND THE 
C JTH VACANCY

R2-R2+(NN(J2,J3)-IV(J,J3))**2 
119 CONTINUE
C IF THE VACANCY IS A MUON NEAREST NEIGHBOR THEN 
C NOTE WHICH ONE IT IS BECAUSE THIS WILL INFLUENCE 
C WHICH DIRECTION IT MOVES,

IF(R2.EQ.O.) THEN 
NKVAC(J )—J 2

C IF THE VACANCY IS NEXT TO A MUON NN THEN NOTE 
C WHICH NN IT IS NEXT TO (BECAUSE THIS WILL BE USED 
C IN DETERMINING HOW IT MOVES) AND THEN INCREMENT 
C THE INDEX AND CHECK THE REMAINING MUON NN 

ELSE IF(R2.EQ.1.0} THEN 
IVAC(J r Jl)—J2 
Jl-Jl+1 

ENDIF 
118 CONTINUE
C PICK A RANDOM NUMBER WHICH WILL BE USED TO DECIDE 
C WHICH DIRECTION THE VACANCY WILL BE ALLOWED TO 
C MOVE.
12 RND-GGUBFS(DSEED)
C IF STATEMENT CHECKS TO SEE WHETHER THE VACANCY IS 
C A MUON NN

IFfNNVAC(J).NE.O) THEN 
C IF RND IS GREATER THEN P'+5*POUT THEN GOTO THE 
C NEXT VACANCY

IF(RND.GE. (PPRIME+5 . *POUT) ) GOTO 109
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C IF THE RANDOM NUMBER IS LESS THAN PPRIME THEM THE 
C MUON AND VACANCY WILL EXCHANCE POSITIONS.

IF(RND.LT,PPRIME) THEN 
MLOC-NNVAC(J)
GOTO (1,2,3,4,5,6),MLOC 

ELSE
C IF THE RANDOM NUMBER IS GREATER THAN PPRIME THEN 
C PICK ANOTHER DIRECTION TO MOVE WITH SOME REDUCED 
C PROBABILITY

MLOC-(RND-PPRIME)/POUT+1 
IF(NNVAC(J )* E Q .1) GOTO 71 
IF(NNVACfJ).EQ.2) GOTO 72 
IF (NNVAC(J ) .E Q .3) GOTO 73 
IF(NNVAC(J).EQ.4) GOTO 74 
IF(NNVAC(J).EQ.5) GOTO 75 
IF(NNVAC(J).EQ.6J GOTO 76 

ENDIF
C IF THE VACANCY IS NOT A NEXT NEAREST NEIGHBOR OR A 
C NEAREST NEIGHBOR OF THE MUON THEN THE PROBABILITY 
C OF MOVING IN ANY OF THE SIX DIRECTIONS IS EQUALLY 
C LIKELY.

ELSE IF(NNVAC(J).EQ.O.AND.IVAC(J,1)-EQ.O) THEN 
C IF RND IS GREATER THEN 6*P THEN GOTO THE NEXT 
C VACANCY

IF(RND.GE.(6.*P)> GOTO 109 
MLOC-RND/P+1 
GOTO(1,2,3,4,5,6)fMLOC 

C IF THE VACANCY HAS ONLY ONE MUON NN AS A NEIGHBOR 
C THEN INCREASE THE PROBABILITY OF MOVING IN THAT 
C DIRECTION TO PIN

ELSE IF(IVAC(J, 1).N E .0,AND.IVAC(J , 2 ).EQ.O)
1 THEN

C IF THE RANDOM NUMBER IS GREATER THEN PIN+5*P THEN 
C GOTO NEXT VACANCY

IF(RND.GE.(PIN+5.*P)) GOTO 109 
IF(RND.LT.PIN} THEN 

MLOC-IVAC(J ,1}
GOTO(1,2,3,4,5,6),MLOC 

ELSE
C IF THE RANDOM NUMBER IS GREATER THAN PIN THEN 
C ALLOW MOVEMENT IN ONE OF THE OTHER FIVE 
C DIRECTIONS WITH A REDUCED PROBABILITY 

MLOC-<RND-PIN)/P+l 
IF(IVAC(J,1).EQ.I) GOTO 71 
IF(IVAC(J,1).EQ.2) GOTO 72 
IF(IVAC(J,l).EQ.3) GOTO 73 
IF(IVAC(J,l).EQ.4) GOTO 74 
IF(IVAC(J,1).EQ.5) GOTO 75 
IF(IVAC(J ,1)•EQ.6) GOTO 76 

ENDIF
C IF THE VACANCY HAS TWO NEIGHBORS WHICH ARE MUON NN 
C THEN INCREASE THE PROBABILITY OF MOVING TO ONE OF 
C THESE TWO.
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ELSE IF(IVAC{J ,1).NE.0.AND.IVAC(J,2).NE.0)
1 THEN

C IF THE RANDOM NUMBER IS GREATER THAN 2PIN+4P THEN 
C GOTO NEXT VACANCY

IF(RND.GE. (2.*PIN+4 . *P) ) GOTO 109 
IF(RND.LT.PIN) THEN 

MLQC"IVAC(J ,1)
0010(1,2,3,4,5x6),MLOC 

ELSE IF(RND.LT.(2.0*PIN)) THEN 
MLOC-IVAC(J,2)
GOTO(1,2,3,4,5,6),MLOC 

ELSE
C IF THE RANDOM NUMBER>2*PIN THEN ALLOW MOTION TO 
C ONE OF THE FOUR OTHER SITES WITH A REDUCED 
C PROBABILITY

MLOC»(RND-2.*PIN)/P+l 
IF(IVAC(J,1) .EQ.1. AND.IVAC (J , 2) .EQ.3) THEN 

GOTO(2,4,5,6)/MLOC 
ELSE IF(IVAC(J ,1).EQ.1.AND.IVAC(J,2) .EQ. 4)THEN 

GOTO(2,3,5/6),KL0C 
IF(IVAC(J ,1)-EQ.l,

6000

71
72
73
74
75
76 
C

ELSE
ELSE

GOTO(2,3,4,6),MLOC

PICK

IF(IVAC(J/l).EQ.l 
GOTO(2,3,4/5 

ELSE IF(IVAC(J/1).EQ.2 
GOTO(1,4,5,6 

ELSE IF(IVAC(J/1).EQ.2 
GOTO(l,3, 5/6 

ELSE IF(IVAC(J/1).EQ.2 
GOTO(1,3,4/6 

ELSE IF(IVAC(J,1).EQ.2 
GOTO(1/3,4,5 

ELSE IF(IVAC(J/1).EQ.3 
GOTO(1/2,4,6 

ELSE IF(IVAC(J,1).EQ.3 
GOTO(1/2,4,5 

ELSE IF(IVAC(J,1).EQ.4 
GOTOf1,2/3,6 

ELSE IF(IVAC(J,1).EQ.4 
GOTO(1,2,3/5 

ELSE
WRITE(6,6000) IVAC(J ,1)/IVAC(J ,2)
FORMAT(//,IX,'WRONG WAY*,2(IX/13),//) 

ENDIF 
ENDIF 

ENDIF
GOTO(2,3,4,5,6)/MLOC 
GOTO(1,3,4,5,6)/MLOC 
GOTO(1,2,4,5,6)/MLOC 
GOTO(1,2,3,5,6),MLOC 
GOTO(1.2,3,4,6),MLOC 
GOTO(1,2,3,4,5),MLOC 
DIRECTION WHICH THE VACANCY WILL ATTEMPT

AND.IVAC(J ,2).EQ,5)THEN
AND.IVAC(J,2).EQ.6)THEN 
/MLOC
AND.IVAC(J /2)-EQ.3)THEN 
/MLOC
AND.IVAC(J,2).EQ.4)THEN 
/MLOC
AND.IVAC(J,2).EQ.5)THEN 
, MLOC
AND.IVAC(J,2).EQ.6)THEN 
/MLOC
AND.IVAC(J,2).EQ.5)THEN 
/MLOC
AND.IVAC(J,2).EQ.6)THEN 
,ML0C
AND.IVAC(J ,2).EQ.5)THEN 
, MLOC
AND.IVAC(J,2).EQ.6)THEN 
, MLOC

TO
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C MOVE IF K L O O l  MOVE IN -X DIRECTION; -2 MOVE IN 
C +X; -3 MOVE IN -Yf -4 MOVE IN +Y; -5 MOVE IN -Zf
C -6 MOVE IN + Zf MLOC MUST < 7
C MOVE IN THE - X DIRECTION

1 IV(J,1)«IV(J,I)-L 
NTRY(I)-1

C SET NTRY(MLOC)-l TO SHOW THAT DIRECTION HAS BEEN 
C TRIED IF THE VACANCY HAS MOVED OUT TOO FAR BRING 
C IT AROUND TO THE OTHER SIDE

IVA«ABS(IV(J,1) )
IF(IVA.EQ.S) THEN 

IV ( J , I) *-JX 
ENDIF 
GOTO 16 

C MOVE IN THE + X DIRECTION
2 IV(U,1)«IV(J(1)+1 

NTRY(2)-1
C IF THE VACANCY HAS MOVED OUT TOO FAR BRING IT 
C AROUND TO THE OTHER SIDE 

IVA^ABS(IV (J , 1) )
IF(IVA.EQ.5) THEN 

IV(J, 1)—  JX 
ENDIF 
GOTO 16 

C MOVE IN THE - Y DIRECTION
3 IV(J,2)-IV(J,2)-1 

NTRY < 3 ) -1 
IVA-ABS(IV(J,2) )
IF(IVA.EQ.5) THEN

IV(J, 2)—  JY 
ENDIF 
GOTO 16 

C MOVE IN THE + Y DIRECTION
4 IV(J,2)-IV(J,2)+1 

NTRY(4) “1 
IVA=ABS(IV(J,2) )
IF(IVA.EQ.5) THEN

IV(J,2)—  JY 
ENDIF 
GOTO 16 

C MOVE IN THE - Z DIRECTION
5 IV(J,3)-IV(J,3)-1 

NTRY { 5) *■ 1 
IVA^ABS(IV(J ,3) )
IF(IVA,EQ.5) THEN
IV(J,3)«-JZ 

ENDIF 
GOTO 16 

C MOVE IN THE + Z DIRECTION
6 IV(J,3>«IV(J,3)+1 

NTRY < 6)-1
IVA-ABS(IV(J ,3) )
IF(IVA.EQ.5) THEN
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IV(J, 3)—  JZ 

ENDIF
C IF THE SPOT WHICH THE VACANCY IS TRYING TO MOVE TO 
C HAS ALREADY BEEN THE SITE WHICH A PROTON HAS 
C MOVED INTO DURING THIS TIME INTERVAL,
C OR IS THE SITE OF ANOTHER VACANCY, THEN GO BACK 
C AND PICK ANOTHER DIRECTION TO MOVE.
16 IF(MARK(IV (J , 1) ,IV(J ,2) , IV (J , 3) ) .EQ.1) THEN

IV(J,1)-JX 
IV(J,2)-JY 
IV(J ,3)-J Z
MTRY-NTRY (1) +NTRY ( 2 ) +NTRY (3) +NTRY ( 4 ) +

1 NTRY(5)+NTRY( 6}
C IF THE VACANCY HAS NOT BEEN ALLOWED TO MOVE TO ANY 
C OF THE NN SIX SITES DURING THIS TIME INTERVAL,
C I.E. MTRY-6, THEN GO ON TO THE NEXT VACANCY

IF(MTRY.EQ.6> GOTO 109 
GOTO 12

ENDIF
C CHECK TO SEE WHETHER THE VACANCY MOVED INTO THE 
C MUON'S POSITIONt IF SO THEN,MOVE THE POSITION
C MARKER FOR THE MUON

IF(IVf J ,1). EQ.MPOS{1).AND.IV(J , 2 )
1 .EQ.MPOS(2) .AND.IV(J,3).EQ.MPOS(3) } THEN 

KPOS(1) -JX 
MPOS (2) —JY 
MPOS(3)—JZ 
MMF05-MMPO5+1 
MNPOS3-1 
MNN-MNN+1
WRITE(6,1007) MPOS,I,J 
FORMAT(IX, 'THE MUON HAS MOVED TO (', 
2(13, ' , • > ,13, ’ ) DURING LOOP’ ,15, 1 AND', 
’HAS SWAPPED POSITION WITH VACANCY’, 
13)

DO 113 Ml—1,6 
DO 114 M2—1,3 

MARKERS FOR THE NN
IF<((Ml+1)/M2).EQ.2) THEN 
NN (Ml,M2)—MPOS(M2)-(—1)**M1 
ELSE IF(M1.EQ.2.AND.M 2 .EQ.l) THEN 
NN(Ml,M2)-MPOS(M2)-(-l)**M1 
ELSE
NN(Ml,M2)-MPOS(M2)
ENDIF 
CONTINUE 
CONTINUE 

ENDIF
C EXCHANGE THE SPINS BETWEEN THE OLD AND NEW PROTON 
C SITES.

DO 110 JS-1,3 
SPIN(JX,JY,JZ,JS)- 

1 SPIN(IV(J,1),IV(J ,2),IV (J ,3) ,JS)

1007
1
2
3

C MOVE THE

114
113
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SPIN(IV(J , 1) ,IVfJ,2},IV(J,3),JSJ-0.0 

110 CONTINUE 
C MARK-1 MEANS THAT THE PARTICLE IN THAT SITE HAS 
C MOVED TO THAT SITE DURING THIS TIME INTERVAL 

MARK(IV( J , 1},IV(J , 2 ),IV(J,3))-l 
MARK(JX,JY,JZ)-1 

C GO ON TO THE NEXT VACANCY 
109 CONTINUE

DO 116 L2-1,7 
DO 111 Ll-1,6
IF(NN(LI,1).EQ.IV(L2,1).AND.N N (LI,2).

1 EQ.IV(L2,2).AND-NN(L1,3),EQ.IV(L2,3)} THEN 
NCHECK(I , L2 ) -1

ENDIF 
111 CONTINUE

IF((NCHECK(Ir L2) -NCHECK(I-1,L2)) .EQ.l) THEN 
MNPOS1-1 
MNN-MNN+1

ELSE IF((NCHECK(I, L2)-NCHECK(1-1, L2)).EQ.-1) 
1 THEN

MNPOS2-1
MNN-KNN+1

ENDIF 
116 CONTINUE

CALL BCAL(BN)
BNB-BN(1)*BX(1)+BN(2)*BX(2)+BN(3)*BX(3)

C DOT PRODUCT OF THE MAGNETIC FIELD WITH THE UNIT 
C VECTOR OF THE EXTERNAL APPLIED MAGNETIC FIELD 
C FC IS THE MUON FIELD CORRELATION 

IF(BOB.NE.0,0) THEN 
FC-BNB/BOB

ELSE
FC-BNB

ENDIF
IF (MNPOS1. EQ. 1. AND. MNPOS2 . EQ. 1. AND.
1 MNPOS3.EQ.1) THEN 
WRITE(2,1009) BNB,FC,I,MNN

1009 FORMAT(2(IX,1PE13 . 6) ,2(IX,15) , 1 NN MOVES ' ,
1 'AND VACANCY I/O AND MUON')
ELSE IF(MNPOSL.EQ. 1.AND.MNPOS2.EQ.1.AND.
1 MNP0S3.EQ.0) THEN 
WRITE(2,1010) BNB,FC,I,MNN

1010 FORMAT(2(IX,1PE13 , 6) ,2(IX,15) , ' NN MOVES ',
1 1 AND VACANCY I/O »)
ELSE IF(MNPOS1. EQ. 1.AND.MNPOS2.EQ.O.AND.
1 MNPOS3.EQ.1) THEN 
WRITE(2,1011) BNB,FC,I,MNN

1011 FORHAT (2 ( IX, 1PE13 . 6) , 2 (IX, 15) , ' NN MOVES ',
1 'AND VACANCY IN AND MUON1)
ELSEIF(MNPOS1.EQ.0.AND.MNPOS2.EQ.1 .AND.

1 MNP0S3.EQ.1) THEN 
WRITE(2,1012) BNB, FC,I,MNN

1012 FORMAT(2(IX,1PE13.6),2(IX,15),* NN MOVES
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1 'AND VACANCY OUT AND MUON')
ELSE 1F {KNPOS1. EQ . 1. AND.MNPOS2 . EQ . 0 . AND.

1 MNFOS3.EQ.O) THEN 
WRITE(2,1013) BNB,FC,IrHNN

1013 F0RMAT<2(IX,1PE13.6) ,2(IX,15) , • NN MOVES ',
1 1 AND VACANCY I N 1)
ELSE IF(MNPOS1.EQ.0.AND.MNPQS2-EQ.1.AND.

1 MNPOS3.EQ.O) THEN 
WRITE(2,1014) BNB,FC,I,MNN

1014 FORMAT(2 (IX,1PE13.6} , 2 (IX,15) , 1 NN MOVES ’,
1 'AND VACANCY OUT')
ELSE IF(MNF0S1,EQ. 0. AND.MNFOS2 .EQ. 0. AND.
1 MNPOS3 * EQ.1) THEN 
WRITE(2,1015) BNB,FC,I,MNN

1015 FORMAT(2(1X,1PE13.6) ,2(IX,15} , ' NN MOVES 
1 1AND MUON MOVE')
ELSE
WRITE(2,1016) BNB,FC,I,MNN

1016 FORMAT(2(IX,1PE13.6) ,2(IX,15) , ' NN MOVES') 
ENDIF
MNPOSl-O 
MNFOS2-0 
KNPOS3-0 

10B CONTINUE
WRITE(6,100B) MMFOS, MNN 

1008 FORMAT(IX, 'OVER 3000 TIME INTERVALS, THE ',
1 ’MUON MOVED1,14,’ TIMES AND H A D ’,15,
2 ' NN VACANCIES.’)
STOP
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE TO CALCULATE THE MAGNETIC FIELD C
FELT BY THE MUON FROM PROTONS WITH A C
DISTANCE EQUAL TO SQRT(20.). C

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE BCAL(B)
COMMON /S/SPIN{-4:4,-4:4,-4:4,3)
COMMON /MUON/MPOS(3)
REAL B (3)
INTEGER LOC(3)

C SET THE MAGNETIC FIELD IN THE THREE DIRECTIONS 
C EQUAL TO ZERO 

B<1)«0.
B<2)-0.
B(3)«0.
DO 100 IX— 4+MPOS (1) , 4+MFOS (1)
LOC(l)-IX-MFOS(l)
I-IX

C IF MOD (I) OR (J) OR (K) IS GREATER THAN 4, THEN 
C WRAP AROUND AND LOOK AT THE SPIN ON THE OTHER 
C SIDE OF THE LATTICE.
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IF(I .LT.-4) I-I+9
IF(I.GT.4) I-I-9
DO 101 JY— 4+MFOS (2) ,4+MP0S{2)
LOC (2 ) <TY-MPOS (2)
J-JY
IF(J .LT.-4) J-J+9
IF(J ■GT.4) J«J-9
DO 102 KZ— 4+MPOS (3) , 4+MPOS (3)
LOC(3)"KZ-MPOS(3)
K-KZ
IF(K-LT.“4) X-K+9 
IF(K.GT,4) K-K-9 

C IF THE LATTICE SITE IS THE MUON SITE THEN GO ON TO 
C THE NEXT SITE

IF(LOC(1).EQ.O.AND.LOC(2).EQ.0.AND.
1 LOC(3)■EQ.0) GOTO 102 

C R2 IS THE SQUARE OF THE DISTANCE BETWEEN THE 
C PROTON AND MUON LATTICE SITES

R2=LQC{1)**2+LOC<2)**2+LQC(3)+*2 
IF (R2.GT.20.) GOTO 102 
R3-R2**l,5

C DPIR IS THE DOT PRODUCT BETWEEN THE SPIN AND 
C DIRECTIONAL VECTOR

DPIR"(LOC(1)*5PIN(I , J ,K,1)+L0C(2)*
1 SPIN(I,J,K,2)+LOC(3)*SPIN(I,J,K,3))/R2 
DO 103 L-1,3

C B(L) IS THE MAGNETIC FIELD IN THE LTH DIRECTION 
B (L) -B ( L) + ( 3 . 0*DPIR*LOC (L) -SPIN (I , J , K, L) > /R3

103 CONTINUE
102 CONTINUE
101 CONTINUE
100 CONTINUE

RETURN
END



APPENDIX B 
DIPOLAR BROADENING BY UNLIKE SPINS62

For a system of two spins (I and S), the total Hamil­
tonian is

H - h J + + H*1 + H^s + H*s . (B.l)

X sThe terms HQ and are the Zeeman Hamiltonians for spin I 
and S, respectively. The terms H^1, H^s and H^s are the 
dipolar Hamiltonians which describe the interaction of the 
spins among themselves and with each other. The second 
moment for spin I is represented by the contributions due 
to interactions among itself and also with spin 5.

M| - <m |)iX + (M*)IS (B.2)

Each term can be calculated separately using a Van Vleck 
formula for unlike and like spins.

<Ml)IS - l/3727|l(I + 1)ft2 (Ej<l-3cos2*j)2/r6) (B.3)
(Kj)ll “ 3/47|l(I + l)«2 {Ej<l-3cos2*j)2/r6) (B.4)
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Use of the time-differential technique prohibits interac­
tions between two muons, since only events resulting from 
one muon being in the sample at a time are kept. Therefore 
if spin S is associated with the proton and spin I with 
the muon, the only term left in Eqn. B.2 is (MjJiS*

In NKR, the broadening due to like spins has been 
found to lead to a difference between the r.m.s width, 
given by the second moment, and the full-width haIf-maxi­
mum of the line. This difference may be observed by cal­
culating the fourth moment of the line. The fourth moment 
Is symbolically written as

M4 « (H*1) 4+ ( H P ) 4+(h P ) 2 <h [s )2+{h SS)2 (h Js)2 (B.5)

Each of these terms is proportional to a gyromagnetic 
ratio.

«1Y * TX7y (B.6)

Since there is only one muon in the sample at a time, the 
terms in Eqn. B.5 may be dropped. If Eqn. B.5 is 

written in terms of H*s , then

M4 « ( H p > 4 + (3/2(TS/7l))2 (H[S)2 ( H p ) 2 . (B.7>

The factor of 3/2 is the multiplicative constant between 
calculations of the second moment for like and unlike



spins assuming only dipolar interactions. Substituting in 
the gyromagnetic ratio for the proton (spin S) and the 
muon (spin 1), one finds that

i s/tI " 1/3.18. 
M4 « 1.22{H*S)4 (B.9>

If the hydrogen-hydrogen interactions would have been 
ignored, then

The addition to M4 is, therefore, due to spin flip-flops 
of the protons. This has the effect of reducing the r.m.s 
value of the line width by ( 1 . 2 2 ) or 1.05. This Is a 
very small effect and does not change the line noticeably 
from a Gaussian shape, but is enough to reduce the effec­
tive line width from the r.m.B. value.

M4 a 1.00<H*S )4 . (B- 10)



APPENDIX C
DERIVATION OF THE PARAHETERS AND fs50*63f64 

The parameter, is defined as64

- - J3 dt exp(-t/v ) dr(t)/dt (C.l)

where r(t) is the argument of the muon spin relaxation 
function, P(t), and TfJ, the mean lifetime of a muon.

P(t) - exp[-r(t)] (c.2 )

If P(t) is of the Abragamian form (Eqn. 5.25), then

r(t) - a2r2 (exp(-t/r) -1 ■+ t/r). (C.3)

If this is substituted into Eqn. C.l, then

a - (C.4)

Another form for r(t) is that for the two-trap model:

r(t) - Zioi.aAi/oat'/J'tfift^Ciift'-ta) (c.5)
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where af, N^(t), and are the second moment, proba­
bility for occupation, and the autocorrelation function 
for the muon at site I. Let us make the following assump­
tions which are pertinent to the model in Section 7.1A.1:
i) Site 1 and 2 are defined to be sites of octahedral 

and tetrahedral symmetry, respectively.
ii) The probability for occupying an octahedral (tetra­

hedral) site initially equals 1-c1 (c1) where o' is 
the effective vacancy concentration.

iii) The rate, r, is the transition rate from an O to a T 
site.

iv) The autocorrelation function for an 0 site is 

<Ux(t> - exp(-t/rB) (C.6)

where rs is a mean time of stay at an 0 site. Since
the muon does not activate out of a T site at room
temperature, the autocorrelation function for this 
site is

G22(t) " I- (c *7 )

This allows the T site to be considered as a deeper 
trap than the 0 site.

These assumptions yield:
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r(t) - a|ET/odti(i-(i-c')exp(-rt2)]dt2 + (C.8)

^o c t /odtl (l-c1)exp(-rt2)EXP[-{ti-t2)/r B ]dt2 .

If this is substituted into Eqn. C.l with the addi­
tional assumption that

r  -  c ' / r s , (C.9)

then after some manipulation one finds that

r s *■ C'r(1[*0,5ll+c'+ (1-C 1 ) ̂ TETr^/<“ “aTETT^ ) + (C.10)
± [0.25x< < 1-C )“/ <"-^TET,rM J ̂  +
(1-C 1 ) (““iTETT^) 1 5”1



APPENDIX D
CALCULATION OF A ZERO-FIELD RELAXATION FUNCTION61

The calculation of the zero-field muon spin relaxa­
tion function requires the Hamiltonian contain terms which 
describe the dipolar interaction between the muon and the 
nearest-neighbor protons. The first-order effects of 
hydrogen-hydrogen dipolar interactions can also be in­
cluded in the Hamiltonian. However, care must be taken to 
balance the need for precision by the inclusion of more 
protons and the amount of space and time available on a 
computer.

H “ sij t^i*^j - 3 (/*i*r£) (p j« rj) ]/r|j (D.l)

The i and j in the dipolar Hamiltonian (Eqn. D.l} indices 
correspond to the muon and the nearest-neighbor protons, 
respectively. To calculate the relaxation function, G z (t), 
one must solve for the eigenstates and calculate the 
relative energies of the states. This entails diagonallz- 
ing the Hamiltonian matrix. Having done this, G a (t} can be 
calculated.

G z (t) - l/3<exp ( iHt/ft ) <? ( 0) exp ( -iHt/ft ) > ir ( 0 ) > (D.2)
182
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For a muon in an octahedral site, there are eight 
nearest-neighbor protone which must be included, in the 
calculation of the polarization for a muon in an oc­
tahedral site, the proton-proton dipolar coupling between 
nearest-neighbor hydrogen nuclei was included as a pertur­
bation. This had the effect of lowering the muon polariza­
tion at long times. However, since only half the number of 
protons which interact with a nearest-neighbor proton were 
included, the proton-proton coupling was increased by a 
factor of jz to attempt to compensate for this.

■ j 2 EI j [f*i'#Jj “ 3 (^i' ̂ i) (jl j * Tj ) ]/r^j <D-3)

The summation is over nearest-neighbor protons. The cal­
culation of G z (t) entailed diagonalizing a 512 x  512 
matrix.

For a muon in a tetrahedral site, the calculation 
with six nearest-neighbor protons entailed diagonalizing a 
12B x 12B matrix. Since none of the nearest-neighbor 
hydrogen atoms for the nearest-neighbor protons (to the 
muon) are Included in the eigenstates of this calculation, 
no dipolar coupling for the proton-proton interaction 
could be included. If this had been done, then the size of 
the matrix would have increased from 128 * 126 to at least 
524,2 88 x 524,238 assuming that only second-nearest-neigh­
bor protons are included.



APPENDIX E
ZERO-FIELD SPIN-SPIN RELAXATION TINE50

Initially, one starts with the relaxation function
G(t) .

.  <rft) - g f Q) >_________  fE n
G(t) " <S(0 } ■ ;ioj> tE,1J

- l/3<axp(iHt/A ) a (0) exp(-iHt/ft ) - <7 (0) > (E.2)

where H is the dipolar Hamiltonian and a is the Pauli spin 
matrix for the proton. The brackets denote an average over 
the muon and proton lattice states.

H “ ^ij [f'i'Mj “ 3 (>i • r^) (̂  j ’ r j ) ]/r^ j (E.3)
“ -sij^i'®ij (E.4)

where - [Jj - 3 tfj*rj)]/rJj (E.5)

To calculate T 2 from the relaxation function, one must 
find the second moment.



Taking the second derivative of Gft) and invoking cyclical 
invariance of the trace, one arrives at the following*

M2 -  [ H , ; ] > / ( 3 * 2 ) ( E . 7 )

The commutator of the dipolar Hamiltonian and the Pauli 
spin matrix for the proton was found to be

tH, ] - -a7^i[i + j +■
k(^xB y ^ y B x )] (E.8)

Upon performing the dot product and taking the trace over 
the states, one finds the formula for the second moment of 
the jth proton,

m 2 - fE.9)

If one is attempting to calculate the second moment of a
2proton due to a lattice of protons, then is equal to

7 j. To calculate the contribution by the muon to the
2 2second moment, equals -ŷ  and the summation is no longer 

needed since there is only one muon* The zero-field second 
moment of a proton nearest neighbor to the muon is the sum 
of contributions from the lattice of protons and from the 
muon.
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