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SUMMARY
Pursuing prey through clutter is a complex and risky activity requiring integration of guidance subsystems
for obstacle avoidance and target pursuit. The unobstructed pursuit trajectories of Harris’ hawks Parabu-
teo unicinctus are well modeled by a mixed guidance law feeding back target deviation angle and line-of-
sight rate. Here we ask how their pursuit behavior is modified in response to obstacles, using high-speed
motion capture to reconstruct flight trajectories recorded during obstructed pursuit of maneuvering
targets. We find that Harris’ hawks use the same mixed guidance law during obstructed pursuit but
appear to superpose a discrete bias command that resets their flight direction to aim at a clearance of
approximately one wing length from an upcoming obstacle as they reach some threshold distance
from it. Combining a feedback command in response to target motion with a feedforward command in
response to upcoming obstacles provides an effective means of prioritizing obstacle avoidance while re-
maining locked-on to a target. We therefore anticipate that a similar mechanism may be used in terrestrial
and aquatic pursuit. The same biased guidance law could also be used for obstacle avoidance in
drones designed to intercept other drones in clutter, or to navigate between fixed waypoints in urban
environments.
INTRODUCTION

Collision avoidance1–4 and target pursuit5–8 are challenging

flight behaviors for any animal or autonomous vehicle, but their

interaction is even more so.9–11 For predators adapted to hunt-

ing in clutter, the demands of these two tasks will often come

into conflict,12 requiring effective reconciliation to avoid loss

of the target or a hazardous collision. Technical approaches

to autonomous obstacle avoidance commonly combine active

mapping13 and path planning14 algorithms, but these ap-

proaches are computationally costly15 and are unlikely to be

effective during closed-loop pursuit of a target maneuvering

through clutter. Consequently, collision avoidance must instead

be implemented reactively during prey pursuit. For instance,

the combined pursuit-avoidance behavior of predatory flies

has been modeled successfully using visual feedback on target

motion and obstacle looming,16 although it is unclear how well

the proposed behavioral algorithm will generalize to complex

environments with many obstacles. Reactive behavioral dy-

namics17 have also been observed in humans walking around

obstacles to reach a stationary goal18 or moving target,19

inspiring algorithmic implementations in autonomous sys-

tems.20,21 Obstacle avoidance has been studied in echolocat-

ing bats catching stationary targets,12 and there have been

several neuromorphic implementations of sonar obstacle

avoidance in robots targeting fixed goals.22,23 Nevertheless, it
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remains unknown how aerial predators reconcile the conflict

between obstacle avoidance and target pursuit in clutter, and

this remains an open problem in robotics.

The unobstructed pursuit behavior of Harris’ hawks Parabu-

teo unicinctus has been well characterized,11 but their natural

mode of hunting involves short flights targeting terrestrial prey

in habitat clutter.24 Here, we use a high-speed motion capture

system to reconstruct the flight trajectories of N = 4 Harris’

hawks chasing a lure towed along an unpredictable path

about a series of pulleys in a large hall with or without obsta-

cles (Video S1). We used two rows of hanging ropes as obsta-

cles: the first row forming a dense clump that the bird had to

fly around, and the second simulating a row of trees that the

bird had to fly between (Figures 1A and 1B). We then simu-

lated these data computationally using several alternative

models of the guidance dynamics. We find that the hawks’ ob-

structed pursuit trajectories are well modeled by the same

mixed guidance law used during obstructed pursuit (Equa-

tion 1), but with the superposition of a discrete bias command

that resets their flight direction to aim at a clearance of

approximately one wing length from an upcoming obstacle

as they reach some threshold distance from it. This biased

guidance law provides an effective means of prioritizing

obstacle avoidance while remaining locked-on to the target.

We conclude by discussing possible applications of this

mechanism to autonomous systems.
hor(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Overview of experimental setup

(A) Overhead view of flight hall. Each of the N = 4 Harris’ hawks flew from one of three alternative starting positions (bird icons), chasing a food lure (yellow arrow)

that was pulled forward by a pair of linear motors (gray rectangles) from its starting position on a towline with a trailing drag line (green solid line) that ran around 3

or 4 out of 6 pulleys (red circles). Dummy towlines (green dashed lines) were laid around the remaining pulleys, so that the bird would not be able to anticipate

which of the 6 alternative paths the lure would follow. The hawk and lure were tracked by 20 motion capture cameras positioned around the room (camera icons).

Ropes (black circles) were hung as obstacles in the configuration shown for the test flights with obstacles.

(B) Photo of experimental set-up looking from the linear motors back toward the starting positions of the bird and lure; note the diffuse overhead lighting provided

by bouncing light from the 8 LED up-lights positioned around the walls. Shrubs and trees were placed down the sides of the room to provide visual contrast and

discourage flight outside of the central test area.

(C) Overhead view of Harris’ hawk, showing the marker templates worn on the back and tail (black patches) together with the attached retroreflective markers

(white circles).

(D) Still frame from Video S1, showing typical pursuit behavior by first-year male Rhaegal.

See also Video S1.
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RESULTS

Our dataset comprises four distinct subsets: (1) a set of n = 128

obstacle-free training flights collected over an initial 8 days, (2)

a set of n = 16 obstacle familiarization flights collected the

following day, then (3) a set of n = 103 obstacle-free test flights,

and (4) a set of n = 154 obstacle test flights, where (3) and (4) were

collected over 15 days on which the presence or absence of ob-

stacles was randomized (STARMethods). The sampling of these

subsets was approximately balanced across the N = 4 individ-

uals (Table S1).

Model validation
Previous work11 has found that the unobstructed pursuit trajec-

tories of Harris’ hawks are well modeled by assuming their

turning is commanded at an angular velocity:
_gðtÞ = N _lðt � tÞ � Kdðt � tÞ; (Equation 1)

where N, K, and t are fitted constants; _l is the angular rate of the

line of sight from the pursuer to the target; d is the signed devia-

tion angle between the pursuer’s flight direction and its line of

sight to the target; and t is time. Because Equation 1 mixes feed-

back on the line-of-sight rate _l and the target deviation angle d, it

is described as a mixed guidance law. We begin by using the n =

128 obstacle-free training flights to validate Equation 1 at the

previously published parameter settings11 of N = 0:7, K =

1:2 s� 1, and t = 0:09 s. We match the hawk’s simulated flight

speed to its measured flight speed and use Equation 1 to model

its horizontal turning behavior, taking the measured trajectory of

the lure as a given (but see Paul and Ghose25 for an analytical

model of speed variation fitted to the earlier data from Brighton

and Taylor11). We match the initial conditions of each simulation
Current Biology 33, 3192–3202, August 7, 2023 3193



Figure 2. Measured pursuit trajectories of Harris’ hawks compared to guidance simulations under the mixed guidance law

Each panel represents a single obstacle test flight and plots the hawk’s measured flight trajectory (dark blue) in pursuit of the lure (dark red) up to the point of

capture (black dot). The measured data are compared to a simulation of the hawk’s trajectory (light blue) under the refined mixed guidance law (Equation 1) with

best-fitting parameters N = 0:75, K = 1:25 s�1, and t = 0:01 s fitted to the union of the test flights with and without obstacles. The displayed values of ε show

the mean prediction error for each simulation. The lefthand panels show the four longest obstacle test flights; the righthand panels show the four obstacle test

flights with the lowest mean prediction error relative to the total distance flown, for flights >9 m in length. Grid spacing: 1 m. See also Figure S1.
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to the measured data. We define the instantaneous prediction

error of the simulation, εðtÞ, as the distance between the bird’s

measured and simulated position, which we summarize by re-

porting the mean prediction error (ε) for each flight, and its me-

dian (~ε) over all the flights within each subset.

The resulting simulations typically had a low mean prediction

error, with a median value of ~ε = 0:22 m over the n = 128 flights

(95% CI: 0.20, 0.28 m). By comparison, the median over the in-

dependent dataset of n = 50 obstacle-free flights to which Equa-

tion 1 was originally fitted was ~ε = 0:34 m (95%CI: 0.24, 0.53 m).

Equation 1 therefore models our sample of n = 128 obstacle-free

training flights at least as well as the sample of n = 50 outdoor

flights to which it was fitted, validating its suitability as a model

of unobstructed pursuit behavior in Harris’ hawks. Because

Equation 1 feeds back the deviation angle d in addition to the

line-of-sight rate _l, it produces a characteristic tail-chasing

behavior, which is expected to produce implicit collision avoid-

ance if the pursuer is chasing a target that is itself weaving be-

tween obstacles. The lure traveled through the gaps between

obstacles on the n = 16 obstacle familiarization flights, so we

tested this prediction by using Equation 1 to simulate these

flights at the published parameter settings.11 Although themodel

does not always predict the hawk’s turning behavior closely at

the point of capture, it predicts earlier sections of each flight

well, following the lure through the gaps between obstacles (Fig-

ure S1A). The target pursuit subsystem that Equation 1 describes

is therefore capable of producing a safe path through clutter

when chasing a target that itself passes safely between

obstacles.

Model refinement
We next refined the parameters of the mixed guidance law

(Equation 1) in relation to the n = 257 test flights that we re-

corded. For direct comparability with the results of our modeling

using the original mixed guidance law,11 all of our simulations
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begin from 0.09 s after the start of each recording, allowing for

a sensorimotor delay of t% 0:09 s. We began by fitting separate

models to the test flights with and without obstacles, finding the

guidance parameter settings that minimized the median of the

mean prediction error, ~ε, over each subset of flights (STAR

Methods). However, as the optimized parameters were similar

for each subset (N = 0:75, K = 1:15 s� 1, and t = 0:005 s for

the n = 103 obstacle-free test flights; N = 0:75, K = 1:15 s� 1,

and t = 0:015 s for the n = 154 obstacle test flights) and were

close to those fitted in previous work,11 we re-fitted the model

to the union of the test flights with and without obstacles (Fig-

ure 2; see also Figure S1B).

Because flights with obstacles are overrepresented in this

sample relative to flights without obstacles, we used a subsam-

pling procedure in which we randomly subsampled 80 flights

without replacement from each subset and identified the param-

eter settings that minimized ~ε over that subsample (STAR

Methods). We repeated this sampling experiment 100,000 times

and took the median of the best-fitting parameter settings as

our refined model. The goodness of fit of this model with refined

parameter settings of N = 0:75, K = 1:25 s� 1, and t = 0:010 s

was similar for both the n = 103 obstacle-free test flights (~ε =

0:14 m; 95% CI: 0.12, 0.19 m; Figure S1B) and the n = 154

obstacle test flights (~ε = 0:16 m; 95%CI: 0.14, 0.21m; Figure 2).

Moreover, it performed marginally better on the validation data

from the n = 128 obstacle-free training flights (~ε = 0:21 m;

95%CI: 0.17, 0.26 m) than the original version of the mixed guid-

ance law.11 We therefore take the refined mixed guidance law as

our best-supported model of the target pursuit subsystem of

Harris’ hawks.

Take-off direction is biased to avoid obstacles
The refinedmixed guidance law usually predicted a collision-free

path around the first row of obstacles (Figure 2), which reflects

the fact that our simulations were initialized using the bird’s
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Figure 3. Bias in take-off direction with respect to lure

(A) Histogram of the initial deviation angle, d0, defined as the angle between the hawk’s flight direction and its line of sight to the lure, sampled at the time t = 0

from which the guidance simulations began.

(B) Histogram of the absolute initial deviation angle, jd0j.
(C) Violin plots of the absolute initial error angle, jh0j, defined as the angle between the hawk’s initial flight direction and its initial line of sight to the target stated

beneath each plot. In the special case that the target is the lure (denoted lure ‘‘position’’), then jh0jhjd0j. The three alternative target definitions include (1) the

nearest edge of the first obstacle (denoted ‘‘obstacle edge’’), (2) the center of the gap between this and the wall (denoted ‘‘gap center’’), and (3) an intermediate

position approximately one wing length (0.5 m) into the gap from the edge of the obstacle (denoted ‘‘obstacle edge + wing’’). Data are shown for all n = 154

obstacle test flights and for n = 103 obstacle-free test flights, having dropped all 3 flights on which the hawk had already traveled beyond the location of the first

obstacle by the point at which the guidance simulations began. Each violin plot displays a kernel density estimate of the data overlain with the actual data points;

the thick black line in the center of of each plot extends between the lower and upper quartiles; a thin vertical line displays the range of the data points not

considered outliers; the median is shown as a white dot.
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measured take-off velocity. Hence, if the hawk set its take-off di-

rection to avoid the first set of obstacles, then the resulting bias

in the initial value of its deviation angle d would be embedded in

its subsequent pursuit behavior.We tested this by comparing the

distribution of the initial deviation angle, d0, measured between

the hawk’s flight velocity and its line of sight to the lure at the start

of the simulation, for the different test flight subsets.

Whereas the distribution of d0 was unimodal with a mode at

d0z0 for the test flights without obstacles, it was bimodal with

modes at d0z±20� for the test flights with obstacles (Figure 3A).

Accordingly, the median absolute initial deviation angle (Fig-

ure 3B) was larger for the test flights with obstacles (21.2º;
95% CI: 19.8º, 23.8º; n = 154 flights) than for those without

(11.7º; 95% CI: 9.1º, 13.9º; n = 103 flights; see Figure 3 legend

for exclusions). Hence, whereas the hawks took off toward the

lure when there were no obstacles present, they biased their

take-off away from any obstacle that was blocking their path to

the lure.

We next testedwhether this observed bias in take-off direction

was necessary and sufficient to ensure that the hawk’s target

pursuit subsystem would produce a safe path around the first

obstacle. We checked this by re-running the simulations for

the test flights with obstacles under the refined mixed guidance

law, having set the initial deviation angle at d0 = 0 (i.e., having

directed take-off toward the lure, despite the presence of an

obstacle blocking the way). These simulations with d0 = 0 often

produced a collision with the first obstacle, even though no colli-

sion was produced when d0 was set to the value observed (Fig-

ure 4). Consequently, the hawks’ biased take-off direction was

necessary (and typically sufficient) to cause their target pursuit

subsystem (Equation 1) to produce a safe path around the first
obstacle. This functional conclusion begs the mechanistic ques-

tion of how the hawks selected this take-off bias, which we

address in the next section.

Take-off biasminimizes obstacle clearance atmaximum
span
Previous research on obstacle avoidance has found that domes-

tic pigeons Columba livia domestica target the centers of gaps

between obstacles,1,2 and that Harris’ hawks fixate on the edges

of obstacles.26 We therefore hypothesized that the hawks would

take off by aiming at either the nearest edge of the obstacle or

the midpoint of the gap between the obstacle and the wall. We

tested this by calculating the initial error angle, h0, between the

hypothesized take-off aim and the direction of the hawk’s flight

and compared this to the equivalent error angle for the lure

(i.e., the initial deviation angle d0).

The median absolute initial error angle was smaller (Figure 3C)

when the hawk was assumed to have aimed its take-off at

either the obstacle edge (median jh0j: 16.6º; 95% CI: 15.0º,
18.6º) or the gap center (median jh0j: 16.1º; 95% CI: 14.4º,
17.6º) rather than the lure (median jd0j: 21.2º; 95% CI: 19.8º,
23.8º). However, the initial error angle was smaller again if the

hawk was assumed to have aimed for a clearance of approxi-

mately one wing length (0.5 m) from the obstacle edge (median

jh0j: 8.3º; 95% CI: 6.2º, 10.7º), with the median absolute error

angle, j~hj, reaching a global minimum of 5º assuming a targeted

clearance of 0.6 m on approach to the first obstacle (Figures 5A

and 5C). This makes sense because aiming at the edge of an

obstacle leaves no clearance, while aiming at the center of a

gap leaves more clearance than is necessary for a gap larger

than the bird’s wingspan. We conclude that the hawks biased
Current Biology 33, 3192–3202, August 7, 2023 3195



Figure 4. Effect of bias in take-off direction on guidance simulations under the refined mixed guidance law

Each panel represents a single obstacle test flight and plots the hawk’s measured flight trajectory (dark blue) in pursuit of the lure (dark red) up to the point of

capture (black dot). The measured data are compared to simulations of the hawk’s trajectory (light blue) under the refined mixed guidance law (Equation 1), with

best-fitting parameters N = 0:75, K = 1:25 s� 1, and t = 0:01 s, and (1) the initial deviation angle, d0, matched to the value we had measured (dashed line) (2)

with the initial deviation angle, d0, set so that d0 = 0 (solid line), where the displayed values of ε show the mean prediction error for the simulation with d0 = 0.

Hanging rope obstacles are plotted as gray dots. The lefthand panels show the four longest flights; the righthand panels show the four flights with the lowest mean

prediction error relative to the total distance flown, for flights >9 m in length. Grid spacing: 1 m.
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their take-off direction to turn tightly around the obstacle

without having to close their wings, thereby reconciling any

conflict between obstacle avoidance and target pursuit without

limiting their control authority. This result is consistent with the

theoretical expectation that a bird’s minimum turn radius in-

creases in proportion to its wing loading and is therefore mini-

mal at maximal span.27

Mid-course steering corrections minimize obstacle
clearance at maximum span
The hawks’ initial bias in take-off direction explains how they

avoided colliding with the first obstacle while chasing the

target, but not how they avoided colliding with the second (Fig-

ure 3). We therefore looked for evidence of mid-course steering

correction by comparing the time history of the median predic-

tion error ~εðtÞ under the refined mixed guidance law for the n =

154 test flights with obstacles and the n = 103 test flights

without (Figure 6).

Because the initial conditions of each simulation were

matched to those we had measured, ~εð0Þ = 0 by definition.

Thereafter, the simulations deviate from the measured trajec-

tories but do so to a greater extent when obstacles are present

(Figure 6). This difference is consistent with our supposition

that the hawks made mid-course steering corrections for

obstacle avoidance that the simulations under Equation 1 do

not capture. Moreover, the median prediction error ~εðtÞ peaks

when the hawks passed the first and second obstacles but

does not peak then for the test flights without obstacles (Fig-

ure 6). The hawks therefore deviated most from the trajectory

commanded by their target pursuit subsystem as they negoti-

ated the obstacles, providing clear evidence of mid-course

steering correction using some form of visual look-ahead.15

Themechanismof biasing take-off direction thatwe have iden-

tified above provides a prior model of how target pursuit may be
3196 Current Biology 33, 3192–3202, August 7, 2023
combined with obstacle avoidance later in the flight (see also

work on obstacle avoidance in human walking behavior18,19,21).

Specifically, we hypothesize that mid-course steering correction

will likewise involve aiming flight for a clearance of approximately

onewing length fromany obstacle blocking the path to the target.

To test this hypothesis, we repeated the error angle analysis that

we had undertaken for the first obstacle (Figures 5A and 5C),

computing how the error angle, h, varied on approach to the sec-

ond obstacle in relation to the bird’s assumed steering aim

(Figures 5B and 5D). Consistent with the results for the first

obstacle (Figures 5A and 5C), we found that the median absolute

error angle, j~hj, reached a global minimum of 3º when the hawks

were assumed to aim for a clearance of 0.65 m from the obstacle

(Figures 5B and 5D). This minimum was reached 4 m from the

second row of obstacles (Figure 5B), so the hawks appear to

have made a mid-course steering correction by the time they

were within 4 m of the second obstacle.

Closed-loop versus open-loop steering correction
Avoiding obstacles by aiming flight at a clearance lends itself well

to reactive open-loop steering correction, which is the simplest

mechanism by which the intermittent demands of obstacle

avoidance may be combined with the continuous demands of

target pursuit. Under this hypothesis, a one-off steering correc-

tion would be made at some threshold distance (or time to colli-

sion) from an upcoming obstacle, perturbing the pursuer’s devi-

ation angle d so that the continuation of its pursuit begins with the

pursuer heading for a clearance of approximately one wing

length from the near edge of the obstacle. This is comparable

to an approach used in high-speed autonomous obstacle avoid-

ance,15 wherein obstacles are first detected at a certain distance

using pushbroom stereo, a safe open-loop trajectory is then

selected from among a library of possible flight maneuvers,

and the chosen maneuver is ultimately executed under
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Figure 5. Error angle as a function of targeted clearance from obstacle edge

Plots of themedian absolute error angle, j~hj, where the error angle h is defined as the angle between the hawk’s flight direction and its line of sight to the clearance,

conditional upon the clearance being targeted. Data are shown for the subset of n = 111 obstacle test flights on which the hawk intercepted the target after

passing the second obstacle.

(A and B) Median absolute error angle j~hj as a function of targeted clearance from (A) the first obstacle and (B) the second obstacle, plotted at a range of different

distances from the obstacle. The global minimum (red dot) is reached at 2.2m from the first obstacle (gray line), shortly after take-off, and at 4.0m from the second

obstacle (thick gray line).

(C and D) Median absolute error angle j~hj as a function of targeted clearance from (C) the first obstacle and (D) the second obstacle, plotted for the specific

distance at which the global minimum is reached (thick gray line). The colored lines plot the same quantities for the subset of flights from each individual bird. Red

dashed lines denote the locations of the targeted clearances referred to in the main text; note that the exact position of the gap center varies between trials owing

to variation in the placement of the obstacles and is therefore summarized by its mean position across trials.
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closed-loop control using a linear quadratic regulator.15 Hence,

when we refer to a steering correction as being made in open

loop, we refer specifically to the generation of the guidance com-

mand—the execution of which could be realized using feedback

or feedforward control.
In contrast, previous studies of obstacle avoidance in pi-

geons1,2 havemodeled steering through clearances as being im-

plemented using a guidance command generated in closed

loop, where the gap between obstacles is treated as the goal to-

ward which the bird steers under a guidance law such as
Current Biology 33, 3192–3202, August 7, 2023 3197



Figure 6. Median prediction error of the refined mixed guidance law

against time

Median prediction error ~εðtÞ between the measured flight trajectories and

those simulated under the refined mixed guidance law (Equation 1), with best-

fitting parameters N = 0:75, K = 1:25 s� 1, and t = 0:01 s. Because the

initial conditions of each simulation were matched to those we had measured,

~εð0Þ = 0 by definition. The simulations deviate from the measured trajectories

over time but do so to a greater extent on the n = 154 obstacle test flights

(orange) than on the n = 103 obstacle-free test flights (blue). The dashed lines

and vertical bars denote the median and interquartile range, respectively, of

the times at which the hawks passed the locations of the first and second

obstacles. Note that the median prediction error peaks at these times for the

test flights with obstacles (orange), but not for the test flights without obstacles

(blue), providing evidence of mid-course steering correction to avoid them.
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Equation 1. Superposing the resulting guidance command with

that of a target pursuit subsystem19 would therefore result in a

composite steering command that would represent a continuous

compromise between target pursuit and obstacle avoidance, as

is also the case in models of human walking behavior.18,19,21

Hence, provided that the tuning of the guidance parameters is

similar for both the target pursuit and obstacle avoidance sub-

systems, this composite steering command can be modeled

by redefining the target of Equation 1 as the point midway be-

tween the lure and the gap, which causes no increase in the num-

ber of free parameters in the model.

To test for evidence of closed-loop steering correction, we re-

fitted the parameters of the mixed guidance law to the subset of

n = 111 obstacle test flights on which the hawk intercepted the

target after passing the second obstacle, redefining the target of

Equation 1 as the point midway between the lure and a clearance

of 0.6 m from the near edge of the second obstacle. For compar-

ison, we also fitted the simulations treating either the lure or the

assumed clearance from the obstacle as the target of Equation 1.

As before, we matched the initial conditions of the simulations to

those we had measured. In each case, we only fitted the simula-

tions as far as the second row of obstacles to avoid the need to

redefine the target at this point. We found that the prediction error
3198 Current Biology 33, 3192–3202, August 7, 2023
was smallest for the simulations treating the lure as the target (~ε =

0:13 m; 95%CI: 0.12, 0.16 m), largest for the simulations treating

the assumed 0.6 m clearance as the target (~ε = 0:21 m; 95%

CI: 0.20, 0.26m), and intermediate for themodel targeting thepoint

midway between them (~ε = 0:17 m; 95% CI: 0.16, 0.19 m). This

analysis thereforeprovidesnoevidenceofclosed-loopsteering to-

ward the gap between the obstacles, although it does not exclude

thepossibility that someothermechanismofclosed-loopobstacle

avoidance may have been in operation.

We therefore tested the alternative hypothesis that Harris’

hawks pursue targets through clutter under the mixed guidance

law identified above, but that they avoid upcoming obstacles

by applying an open-loop steering correction. To model this

behavior, we (1) inherited the parameters of the refined mixed

guidance law that we had fitted already (i.e., N = 0:75, K =

1:25 s� 1, and t = 0:01 s); (2) prescribed the initial conditions

by aiming take-off for a clearance of 0.6 m from the near edge

of the first obstacle; and (3) added a discrete change in flight di-

rection 4 m ahead of the second obstacle, aiming this for a clear-

ance of 0.6 m from the near edge of the obstacle closest to the

hawk’s flight direction. In cases where the obstacles were

spaced less than 1.2 m apart, such that aiming for a clearance

of 0.6 m from one would have brought the bird closer than

0.6 m to the other, we aimed this change in flight direction at

the center of the gap between them.We used thismodel to simu-

late the subset of n = 111 obstacle test flights on which the hawk

intercepted the targetafterpassing thesecondobstacle (Figure7)

and found that it fitted these data marginally better (~ε = 0:18 m;

CI: 0.14, 0.22 m) than the refined mixed guidance law with initial

conditions matched to those we had measured (~ε = 0:20 m;

CI: 0.15, 0.25 m). Hence, under the error-free conditions of our

simulations, our model of open-loop steering correction is suffi-

cient both to capture the data and to enable successful obstacle

avoidance during pursuit under the mixed guidance law.

Target overshoot
Our simulations do not capture every detail of the hawks’

turning behavior. For example, the longest test-flight trajec-

tories that we recorded ended with the hawk overshooting

the lure, then making a hairpin turn to catch it. This behavior

was not captured by the refined mixed guidance law alone (Fig-

ure 4), but perturbing the trajectory commanded by the target

pursuit subsystem by adding an open-loop steering correction

to avoid the second obstacle often caused the simulations to

overshoot the lure in a lifelike manner (Figure 7). The fact that

a similar overshoot was observed on the test flights without ob-

stacles (Figure S1B) may therefore suggest that the real birds

were either unable to generate an accurate steering command

(e.g., because of sensor error) or unable to meet this steering

demand (e.g., because of physical constraint). It is also

possible that this overshoot was adaptive, reflecting an aspect

of the control of the final strike maneuver that our guidance

simulations do not capture.

Collision risk
Although the rope obstacles that we used were safe by design,

collisions with hard obstacles such as tree trunks could be life

threatening in the natural environment. Our sample of N = 4

birds is insufficient to draw robust conclusions regarding



Figure 7. Measured pursuit trajectories of Harris’ hawks compared to guidance simulations under the refinedmixed guidance lawwith open-

loop steering correction to avoid obstacles

Each panel represents a single obstacle test flight and plots the hawk’s measured flight trajectory (dark blue) in pursuit of the lure (dark red) up to the point of

capture (black dot). The measured data are compared to simulations of the hawk’s trajectory (light blue) under the refined mixed guidance law (Equation 1), with

best-fitting parametersN = 0:75, K = 1:25 s�1, and t = 0:010 s, assuming discrete application of a deviation angle bias targeting a clearance of 0.6 m from the

nearest edge of an upcoming obstacle (black cross), applied once at take-off in respect of the first obstacle and once at a distance of 4.0 m from the second

obstacle. In cases where the gap between obstacles was <1.2 m, this mid-course steering correction was assumed to target the center of the gap, instead of the

usual clearance of 0.6 m from the nearest obstacle. The displayed values of ε show the mean prediction error for the corresponding simulation. The dashed line

plots the continuation of the simulation without the second steering correction applied to show the effect of its application on obstacle avoidance. Hanging rope

obstacles are plotted as gray dots. The lefthand panels show the four longest flights; the righthand panels show the four flights with the lowest mean prediction

error relative to the total distance flown, for flights >9 m in length. Grid spacing: 1 m. See also Figure S1.
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individual variation in collision risk (c2(3) = 5.68; n = 154; p =

0.13), but our subjective impression is that any such variation

is mainly attributable to variation in risk aversion rather than

flight ability. Overall, we observed collisions occurring on

18% of the n = 154 obstacle test flights (95% CI: 13%, 25%),

typically involving clipping of an obstacle by the wing tip

feathers, which would be unlikely to cause harm under natural

conditions, given the compliant nature of the wings. The birds’

observed collision risk was marginally lower, at 13% (95% CI:

6%, 22%), for the subset of n = 72 flights in which the hawk in-

tercepted its target after flying through a gap in the second row

of obstacles that was wider than its wingspan. This is compa-

rable to the modeled collision risk of 14% per flight (95% CI:

8%, 24%) predicted by our open-loop model of obstacle avoid-

ance for the same subset, although the modeled collision risk is

defined more stringently to include only head-on collisions

(STAR Methods).

DISCUSSION

Although it is possible that other guidance laws28 might explain

our hawks’ pursuit behavior as well as or better than the mixed

guidance law that we have fitted (Equation 1), ourmodeling dem-

onstrates high repeatability in the guidance parameters fitted

across hundreds of flights collected under varying experimental

conditions, including different studies on different individuals.11

Such quantitative repeatability is rare in behavioral studies and

presumably reflects both the goal-directed nature of the task

and the accuracy of the kinematic measurements that we have

used to describe it. In summary, we find that pursuit behavior

in Harris’ hawks is well modeled by assuming that their turn
rate _g is commanded by feeding back both the angular rate _l

of their line of sight to the target and the deviation angle d be-

tween their flight direction and their line of sight to the target.

This closed-loop target pursuit subsystem thereby serves to

drive the deviation angle d to zero, leading to a tail chase that pro-

motes implicit obstacle avoidance if their target follows a safe

path through clutter, as was the case on the obstacle familiariza-

tion flights (Figure S1A).

In addition, we find that Harris’ hawks implement explicit

obstacle avoidance (Figure 7) by biasing their take-off direction

(Figure 3) and making subsequent mid-course steering correc-

tions (Figure 6) that perturb the deviation angle dwhen a collision

is imminent (Figure 5). This obstacle avoidance subsystem is well

modeled by assuming that the hawks make a discrete steering

correction when they encounter an obstacle blocking their

path at close range, aiming for a clearance of just over one

wing length from its nearest edge. Hence, even when familiar

with the obstacle field through which they are flying, Harris’

hawks resolve the conflict between obstacle avoidance and

prey pursuit by applying a reactive, open-loop steering correc-

tion that modifies their closed-loop targeting response in a

discontinuous fashion. This avoids the need for forward path-

planning, whichwould be unlikely to be successful when chasing

a target whose future trajectory is unknown.

Formally, we have evidence for the following model of ob-

structed pursuit in Harris’ hawks, where turning is commanded

at an angular velocity:

_gðtÞ = N _lðt � tÞ � Kdðt � tÞ+
�
b if d% c1 and kjhj% c2

0 otherwise
;

(Equation 2)
Current Biology 33, 3192–3202, August 7, 2023 3199
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where b is a bias command, d is the distance to an upcoming

obstacle, and h is the signed angle between the pursuer’s flight

direction and its line of sight to the near edge of the obstacle.

Here N = 0:75, K = 1:25 s� 1, and t = 0:01 s are fitted parame-

ters, while c1 = 4 m and c2 = sin� 1ð0:6 =dÞ define the threshold

distance and angle at which obstacle avoidance is triggered.

The variable k takes the value k = � 1 if the pursuer is on a direct

collision coursewith the obstacle, with k = 1 otherwise, such that

c2 defines the angular tolerance with which obstacles are

avoided. Our specific implementation of Equation 2 in Figure 7

assumes that the bias command is applied as a one-off open-

loop steering correction, made over a short time step of duration

Dt, such that b = sgnhðc2 � kjhjÞ =Dt, where sgnh denotes the

sign of the angle h and jhj denotes its magnitude at the moment

the steering correction is applied. In cases where this steering

correction would bring the pursuer’s flight direction within the

angular tolerance c2 of another obstacle, the bias command is

modified to target the midpoint of the gap between them. This

discontinuous, open-loop implementation (see also Barry

et al.15) has a clear behavioral interpretation, in that the bird is

assumed to avoid obstacles by making a saccadic flight maneu-

ver analogous to those observed in insects. Repeated applica-

tions of a discrete bias command at distances d% c1 from the

obstacle would produce a form of closed-loop control, but in

our implementation here (Figure 7), the bias command is applied

only once in respect of each row of obstacles, thereby justifying

its description as an open-loop steering correction.

It is reasonable to suppose that a similar model might suc-

cessfully describe obstructed pursuit in insects, given the

saccadic nature of their flight maneuvers, but previous work

on obstructed pursuit in robber flies Holcocephala fusca

has instead modeled obstacle avoidance as a closed-loop

response,16 with smooth turning commanded as:

_gðtÞ = N _lðt � tÞ+
�
bðtÞ if _4> 0 and jh � dj% c3

0 otherwise
;

(Equation 3)

where _4 is the looming rate of a narrow object (i.e., the rate of

change in its apparent angular width). Here, N = 3:6 and t =

0:03 s are fitted parameters, while c3 = 43� is the half-width of

the region of interest about the target within which looming ob-

jects are treated as obstacles. Although this is still a discontin-

uous model of obstacle avoidance in the sense that the bias

command b is only engaged under certain conditions, steering

around obstacles is implemented in closed loop with bðtÞ =
0:22 _4ðt � tbÞsgnhðt � tbÞ at tb = 0:09 s, rather than through

selection of a new flight direction in open loop (see also Barry

et al.15). Hence, because the looming rate _4 of an object in-

creases exponentially on approach, so too will the bias com-

mand b, except insofar as it causes the pursuer to turn away

from the obstacle. Equation 3 has some clear disadvantages,

in that it would be complex to implement for a dense obstacle

field like the one used in our experiments and commands avoid-

ance of objects that may not necessarily pose a collision risk. It

would therefore be of interest to test whether the simpler open-

loopmodel of obstacle avoidance that we have proposed (Equa-

tion 2) can successfully model obstructed pursuit in insects.

How might the mid-course steering correction that we have

modeled for Harris’ hawks be implemented physiologically?
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The bias command b in Equation 2 is applied at a distance

d% c1 from an upcoming obstacle, although it is possible that

avoidance might be triggered by a bird estimating its equivalent

time to collision using optic flow cues.29 Either way, applying a

saccadic steering correction at a fixed distance of c1 = 4 m (or

equivalent time to collision) from an upcoming obstacle

fixes the angular tolerance for initiating obstacle avoidance at

c2 = 9�, simplifying estimation of the angular amplitude bDt of

the required steering correction accordingly. This angular toler-

ance of 9� falls well within the binocular overlap of a Harris’

hawk,30 so it is plausible that a hawk might utilize something

analogous to pushbroom stereo15 to detect obstacles at a given

range—even if lacking true stereo vision.31 Estimation of the

angle h between the pursuer’s flight direction and the obstacle’s

edge can be done straightforwardly with reference to the optic

flow field if gaze is stabilized rotationally, as occurs during the in-

tervals between head saccades in most birds. In this case, the

pursuer’s flight direction coincides with the center of expansion

of the resulting optic flow field, so the angle h is equal to the angle

between the center of expansion and the near edge of the

obstacle. The threshold condition kjhj%9� (Equation 2) is then

met whenever the singularity appears either directly on the

obstacle (k = � 1) or on the background (k = 1) within 9� of

the edge of the obstacle.

In practice, most visually guided pursuers track their target by

turning their head, which complicates the interpretation of the

optic flow field by combining rotational and translational self-mo-

tion components. However, in an ideal tail-chase, the pursuer’s

flight direction becomes aligned with the line of sight to its target

as the deviation angle d is driven toward zero. Hence, another

simple heuristic, applicable only in a tail-chase, is to approximate

the angle h as the difference in azimuth between the target and

the near edge of the obstacle. Moreover, a recent pilot study26

of Harris’ hawk gaze strategy during obstructed pursuit found

that the bird fixated its target at an azimuth of ±10� with respect

to the sagittal plane of its head, coinciding with the assumed pro-

jection of its left or right temporal fovea. If this anecdotal result

generalizes, such that targets are fixated at ±10� on the right

(left) temporal fovea when turning to the right (left) around an

obstacle, then at the threshold distance of d = 4 m, the steering

correction bDt = 9� � kjhj that Equation 2 demands would be

approximately the azimuth of the obstacle’s edge with respect

to the head’s sagittal plane. Equivalently, if the pursuer’s gaze

were shifted to fixate the obstacle’s edge in the head’s sagittal

plane, as has also been observed in birds32 including Harris’

hawks,26 then the amplitude of the required body saccadewould

be approximately the same as the amplitude of the required head

saccade.

The model of obstructed pursuit that we have identified for

Harris’ hawks is closely related to a form of guidance law from

missile engineering called biased proportional navigation.33

This is a modification of the basic proportional navigation guid-

ance law _g = N _l with a bias command b added such that _g =

N _l+b. This is often expressed in the alternative form _g =

Nð _l � _lbÞ, by making the substitution _lb = � b=N. Typically,

the bias command b is used tomodify the agent’s underlying tar-

geting response so as to accomplish some other objective, such

as optimizing the control efficiency of a rocket,33 causing a mis-

sile to attain a required impact angle,34 guiding an autonomous
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vehicle along a specified path,35 or meeting specific rendezvous

conditions in spaceflight.36 Many different variants of biased

proportional navigation have been proposed, with bias

commands that may be engaged in either a continuous or

discontinuous fashion, and that may be specified in either

open or closed loop.37 Our modeling demonstrates another

possible technical application of biased proportional navigation

(or its generalization to biased mixed guidance), where the bias

command is used to implement obstacle avoidance in conjunc-

tion with target pursuit.

Our approach to deconflicting obstacle avoidance and target

pursuit takes a closed-loop guidance law, such as proportional

navigation5,6 or the mixed guidance law11,28 of Equation 1, and

biases this by applying a discrete open-loop steering command

at—and if necessary within (Equation 2)—some threshold dis-

tance from an upcoming obstacle. It thereby combines previ-

ously unconnected approaches from missile guidance33–35 and

robotics.15 In so doing, it differs fundamentally from previous

studies that have used proportional navigation to model gap

negotiation in birds2 and autonomous vehicles,38 which treat

the clearance beside an obstacle as a virtual target for the guid-

ance law itself. Our approach also differs from related work on

human walking behaviors18,19 in which a single target serving

as an attractor and a set of obstacles serving as repellers

together produce a smooth turning potential.21 This contrasts

with the saccadic turning behavior resulting from the discontin-

uous influence of obstacles in our model (see also Barry

et al.15). Moreover, although these reactive models of human

walking behavior superficially resemble the mixed guidance

law that we have fitted, insofar as they command steering in pro-

portion to the deviation angle d and line-of-sight rate _l of the

target,39 it is the angular acceleration €g, rather than the angular

velocity _g, that is set proportional to d and _l in these

models.18,19,21,39 It may therefore be worthwhile to explore

whether a model of the form we have fitted here might also

explain human walking behaviors.

To conclude, biased guidance offers a biologically inspired

mechanism for resolving the conflict between obstacle avoid-

ance and target pursuit, which could be deployed in drones de-

signed to intercept other drones in clutter. Since the same guid-

ance laws can likewise be used to steer flight toward stationary

targets, application of an open-loop bias command could also

be used for obstacle avoidance during homing flight, or when

flying between waypoints.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Weused a population of N = 4 captive-bred Harris’ hawksParabuteo unicinctus for this study, comprising one experienced 7-year old

female (Ruby) that had been included in a previous study of pursuit,11 and three first-year males (Drogon, Rhaegal, Toothless) that

had not previously pursued a target (see Table S1).

The birds were housed individually at the John Krebs Field Station, Wytham, Oxford, UK in open-fronted aviaries separated by a

doublemeshwall that enabled the birds to see each other and to interact socially without risk of physical contact. The birds were kept

tethered during the experimental period, according to conventional falconry practice, and were free lofted at other times. The shelf

perch to which each bird was tethered was heated for their comfort during the winter months. The birds were flown 5 days per week

during the experiments and were fed a daily ration of wholefood (i.e., day-old chick, quail, mouse) assessed to maintain individual

body weight at a level that meant they were motivated to chase the target. The birds’ wholefood diet was supplemented with

beef during experiments.

This work was approved by the Animal Welfare and Ethical Review Board of the Department of Zoology, University of Oxford, in

accordance with University policy on the use of protected animals for scientific research, permit no. APA/1/5/ZOO/NASPA, and was

considered not to pose any significant risk of causing pain, suffering, damage or lasting harm to the animals.
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METHOD DETAILS

Experimental design
We recorded the flight trajectories of the hawks as they pursued a food lure towed along a zigzagging course around a set of pulleys,

with or without obstacles present (Figure 1A). A subset of the flights without obstacles that we report are described and analyzed

using a related method elsewhere,28 but the flights with obstacles are reported here for the first time. Each bird usually flew after

the lure four times per day, taking off spontaneously from the falconer’s gloved fist when the lure began moving. The lure was hidden

inside a tunnel at the start of each test, mimicking a terrestrial prey item being flushed from cover. The lure vanished into another

tunnel if the bird failed to catch it by the end of the course, which motivated the birds to catch the lure whilst it was still moving.

The experiments began with an 8-day training phase to familiarize the hawks with the task of chasing the lure without obstacles.

This yielded a set of n = 128 obstacle-free training flights (Table S1), following which we introduced obstacles into the environment.

We conducted a single day of obstacle familiarization flights, using an open layout comprising two rows of four ropes. This yielded a

set of n = 16 obstacle familiarization flights (Table S1) during which the lure was pulled through the gaps between the obstacles. We

used a different obstacle arrangement for themain test flights: the first row of test obstacles comprised an impenetrable grille of eight

ropes centered on the midline of the flight hall (Figure 1B); the second row of test obstacles comprised four pairs of ropes blocking

each of the lure’s four possible paths on its way to the last set of pulleys (Figure 1A). This yielded a total of n = 103 obstacle-free test

flights and n = 154 obstacle test flights (Table S1), recorded over 15 days of trials including 7 days with obstacles, 5 days without

obstacles, and 3 days at the start of the period in which the presence or absence of obstacles was randomized between flights.

We used a simplified pulley configuration at the start of the initial training phase, with four pulleys placed in a diamond-shaped

configuration (Pulleys 1-4 in Figure 1A). This layout produced two possible lure courses, with an unpredictable bifurcation at the first

pulley followed by two predictable changes in target direction at the next two pulleys. Wemodified the pulley setup before the end of

the training phase, placing six pulleys in a chevron-shaped configuration (Figures 1A and 1B). This layout produced six possible

courses, with two or three unpredictable bifurcations in target direction, and one predictable change in direction at the last pulley.

The lure course and hawk starting position were randomly assigned before each flight, and we laid dummy towlines to make it harder

for the hawks to anticipate the lure’s course (Figures 1A and 1B). The speed of the lure was randomized within the range 6-8 m s-1 for

each flight; at higher speeds, the hawkswere unable to catch the lure before the end of the course. Following the initial training phase,

we randomized the presence or absence of obstacles between test flights. This took considerable time, however, and was an un-

necessary source of stress for the birds, so we subsequently randomized the presence or absence of obstacles once at the start

of each day.

Experimental protocol
The experiments were carried out at the John Krebs Field Station, Wytham, Oxford, UK between January and March 2018 in a

windowless flight hall measuring 20.2 m by 6.1 m, with an eaves-height of 3.8 m. The flight hall was lit by flicker-free LED up-lights

providing approximately 1000 lux of diffuse overhead lighting reflected by white fabric sheets hung from the ceiling tomimic overcast

morning or evening conditions. The walls of the hall were hung with camouflage netting to provide visual contrast, and small shrubs

and trees were placed down the sides of the room to discourage flight outside of the central test area (Figure 1B). The hawks were

flown individually from the gloved fist of a falconer positioned in one of three starting positions across the flight hall (Figure 1A). A

falconry lure with a small food reward attached was towed around a series of large pulleys by two Aerotech linear actuators rigged

with a block and tackle system to increase their output speed (ACT140DL, Aerotech Limited, Hampshire, UK); a drag line pulled along

behind the lure smoothed its path around the pulleys (Figure 1A). For the experiments with obstacles, we hung jute ropes (diameter:

0.05 m) from the roof space to the floor to mimic compliant stems or branches, wrapping them in expanded polystyrene pipe insu-

lation to make them safe in case of collision (Figure 1B).

We reconstructed each flight using 20 motion capture cameras recording at 200 Hz (Vantage 16, Vicon Motion Systems Ltd, Ox-

ford, UK), under stroboscopic 850 nm infrared illumination outside the visible spectrum of Harris’ hawks.40 Four high-definition video

cameras (Vue, ViconMotion Systems Ltd, Oxford, UK) recorded synchronized reference video at 120Hz. The camerasweremounted

on a scaffold at a height of 3 m, spaced around the perimeter of the flight hall to maximize coverage (Figures 1A and 1B). The motion

capture system was turned on at least an hour before commencement of the flight experiments and was calibrated immediately

before the first trial by moving an Active Calibration Wand (Vicon Motion Systems Ltd, Oxford, UK) through the capture volume.

The origin and ground plane of the coordinate system were set by placing the calibration wand on the floor in the center of the

room. Each bird was fitted with two rigid marker templates (Figure 1C): a backpack template with four 6.4 mm diameter spherical

retroreflective markers arranged in an asymmetric pattern, attached to a falconry harness (Trackpack Mounting System, Marshall

Radio Telemetry Ltd, Cumbria, UK); and a tail-pack with three 6.4 mm diameter retroreflective markers, attached to a falconry tail

mount (Marshall Aluminium Tail Feather Piece, Marshall Radio Telemetry Ltd, Cumbria, UK). The birds also wore retroreflective

markers attached directly to the feathers on their head, wings, or tail, but these are not included in the present analysis. Six

6.4 mm diameter retroreflective markers were attached directly to the lure, with three markers on either side in a back-to-back

arrangement. Each rope obstacle was fitted with 9.5 mm diameter markers at eye level and floor level.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Trajectory reconstruction
The three-dimensional (3D) positions of the bird, lure, and obstacle markers were reconstructed using Nexus software (Vicon Motion

Systems Ltd, Oxford, UK), in a coordinate system aligned to the principal axes of the flight laboratory. Previous work had found that

the Vicon software was not always able to identify whichmarker waswhich between frames, owing tomarker occlusion and the small

distance between the markers relative to the distance travelled between frames.41 We therefore used custom-written code in MATLAB

(Mathworks, MA, USA) to label the anonymous markers in the rigid templates. Our first step was to identify markers that remained

stationary through the trial as being obstacle markers. For the remaining markers, we used their height above the floor to distinguish

between markers on the bird and the lure and used a clustering algorithm to distinguish between markers on the backpack and the

tail-pack. We used the centroid of the backpack and lure as our initial estimate of their respective positions, treating any frames in

which fewer than three markers were detected on the backpack, tail-pack, or lure as missing data.

The initial position estimates for the backpack, tail-pack and lure were contaminated bymisidentified markers, which we excluded

by removing points falling further than 0.5 m from the smoothed trajectory obtained using a sliding window mean of 0.05 s span. We

then repeated this sliding window mean elimination on the raw data with extreme outliers excluded, this time using a distance

threshold of 0.075m. Our next step was to crop the trajectories to begin at the first frame on which both the bird and lure were visible,

and to end at the point of intercept defined as the point of minimum distance between the bird and lure. We then used cubic inter-

polation to fill in any missing data points and fitted a quintic spline to smooth the 3D data, using a tolerance of 0.03 m for the bird and

0.01 m for the lure. Finally, we double-differentiated the spline functions, which we evaluated analytically to estimate the velocity and

acceleration of the bird and lure at 20 kHz, resulting in a suitably small integration step size for our simulations.

Guidance simulations
As the birds always flew close to the ground plane, our guidance analysis concerns only the horizontal components of the pursuit. We

used the same forward Euler method andMATLAB code described previously11 to simulate the hawk’s horizontal flight trajectory given

the measured trajectory of the lure. We modelled the hawk’s turning using the mixed guidance law in Equation 1 for a given set of

parameter settingsN, K, and t, matching its simulated flight speed to its measured flight speed. In cases where the hawk’s simulated

trajectory resulted in an earlier intercept than its measured trajectory, we matched the continuation of the simulated trajectory to that

of the lure up to the measured point of intercept. By default, we matched the hawk’s initial flight direction in the simulations to that

whichwe hadmeasured. However, we also ran versions of the simulations in whichwe re-initialized the hawk’s flight direction at take-

off or 4 m from the second obstacle, by directing its flight towards some specified location (see results). We defined the prediction

error for each flight, εðtÞ, as the distance between the measured and simulated flight trajectories.

Parameter estimation
We optimized the guidance parameters N, K, and t by minimizing the median of the mean prediction error, ~ε; over a given subset of

flights. We did this using an exhaustive search procedure for values ofN and K from 0 to 2 at intervals of 0.05, and for values of t from

0 to 0.09 s in intervals of 0.005 s. To ensure that wemodelled the same section of flight for all values of t, we began each simulation at

0.09 s after the start of the trajectory. Although we optimized the guidance parameters for the obstacle and obstacle-free test flights

separately at first, we subsequently combined these subsets, owing to the observed similarity of their best-fitting parameter settings.

Because there were more test flights with obstacles than without, we used a balanced subsampling procedure to avoid biasing the

fitting of the joint model in favor of obstructed pursuit. Specifically, we sampled 80 flights at random from each subset and identified

the parameter settings that minimized ~ε over that sample. We repeated this sampling experiment 100,000 times and took the grand

median of the resulting best-fitting parameter settings as our refined model. We quantified the goodness of fit of a given guidance

model by computing the mean prediction error, ε, for each flight. We then used a bias corrected and accelerated percentile method

to compute a bootstrapped 95% confidence interval for the median of the mean prediction error ~ε at the best-fitting parameter set-

tings. We report bootstrapped 95% confidence intervals for other properties of the simulated flight trajectories where relevant, and

Agresti-Coull 95% confidence intervals for the observed and modelled collision risk. We calculated the observed collision risk by us-

ing the video data to count the proportion of flights in which any part of the bird contacted either row of obstacles, and calculated the

modelled collision risk by counting the proportion of flights in which the point corresponding to the bird’s center of mass crossed the

perimeter of any obstacle.
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