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Visual versus visual-inertial guidance
in hawks pursuing terrestrial targets
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The aerial interception behaviour of falcons is well modelled by a guidance
law called proportional navigation, which commands steering at a rate pro-
portional to the angular rate of the line-of-sight from predator to prey.
Because the line-of-sight rate is defined in an inertial frame of reference, pro-
portional navigation must be implemented using visual-inertial sensor
fusion. By contrast, the aerial pursuit behaviour of hawks chasing terrestrial
targets is better modelled by a mixed guidance law combining information
on the line-of-sight rate with information on the deviation angle between the
attacker’s velocity and the line-of-sight. Here we ask whether this behaviour
may be controlled using visual information alone. We use high-speed
motion capture to record n = 228 flights from N = 4 Harris’ hawks Parabuteo
unicinctus, and show that proportional navigation and mixed guidance both
model their trajectories well. The mixed guidance law also models the data
closely when visual-inertial information on the line-of-sight rate is replaced
by visual information on the motion of the target relative to its background.
Although the visual-inertial form of the mixed guidance law provides the
closest fit, all three guidance laws provide an adequate phenomenological
model of the behavioural data, whilst making different predictions on the
physiological pathways involved.
1. Introduction
A hawk pursuing a hare must steer its flight to achieve capture. Drawing inspi-
ration from missile engineering, recent algorithmic studies aim to identify a
guidance law that successfully models the turning behaviour of the attacker
[1]. Guidance laws implement pursuit by commanding turning in response to
the relative motion of the attacker and its target [2]. For example, a guidance
law called proportional navigation (PN) has long been used to implement gui-
dance in homing missiles [3], and commands steering in proportion to the
angular rate ( _l) of the line-of-sight from the attacker to its target. An alternative
guidance law called proportional pursuit (PP) commands turning in proportion
to the deviation angle (δ) between the attacker’s velocity and the line-of-sight
from the attacker to its target. These two guidance laws produce different pur-
suit trajectories in response to the same target motion: whereas PN guidance
closely models the steering behaviour of falcons [4,5], bats [6], robber flies [7]
and killer flies [7], PP guidance has been found to model the steering of blow-
flies [8], tiger beetles [9] and honeybees [10]. Other, more complex, guidance
laws are possible. For example, Brighton & Taylor [11] found that combining
PN and PP guidance linearly in a mixed (PNP) guidance law provided the
best model of steering behaviour in Harris’ hawks (Parabuteo unicinctus),
which are the subject of this study.

Besides commanding different pursuit trajectories in response to the same
target motion, the PN, PP and PNP guidance laws differ fundamentally in
the nature of the sensory cues they use. PN commands steering in response
to the line-of-sight rate, _l, defined as the rate of change in the line-of-sight
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Figure 1. Pursuit geometry. The fixed orthonormal basis vectors 1x and 1y
are taken to define an inertial frame of reference FI in which the various
quantities are measured. The angle between the hawk’s velocity vector vP and
the inertial reference direction 1x is the flight path angle γ. The line drawn
from the pursuer (P) to its target (T ) is called the line-of-sight vector r. The
angle between the line-of-sight vector r and the inertial reference direction
1x is called the line-of-sight angle λ. The time derivative of the line-of-sight
angle with respect to FI is called the inertial line-of-sight rate I _l, and is
fed back to command turning under the inertial-PN guidance law. The angle
that the hawk’s velocity vector, vP, forms with the line-of-sight vector r is the
deviation angle, δ, which is fed back to command turning under the pro-
portional pursuit (PP) guidance law. The inertial-PNP guidance law, which
has been used to model Harris’ hawk attack trajectories previously [11],
feeds back both I _l and δ to command turning.
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angle (λ) measured between the line-of-sight to the target and
some fixed reference direction (figure 1). PN therefore relies
on exocentric cues, because it involves measuring changes
in the line-of-sight direction with respect to an external
frame of reference. By contrast, PP commands steering in
response to the deviation angle, δ, defined as the angle
between the line-of-sight to the target and the attacker’s
own velocity vector (figure 1). PP can therefore be
implemented using egocentric cues alone, because it only
involves measuring the line-of-sight direction with respect
to the attacker’s own self-motion, which can make PP simpler
to mechanize than PN [2]. The mixed PNP guidance law
combining PN and PP therefore employs a mixture of ego-
and exo-centric cues. Nevertheless, as we show below, a
related form of the same mixed guidance law can be made
to work using egocentric cues alone, which has important
implications for how the respective variables can be
measured physiologically.

Because the line-of-sight angle λ is defined with respect to
a fixed reference direction [2–5,7], an agent employing PN
guidance must measure the line-of-sight rate _l in an inertial
frame of reference. Typical homing missiles do so by using
a gimballed device called a seeker to track the target with a
target acquisition sensor (e.g. radar dish or imaging sensor).
Inertial sensors called rate gyros measure the angular rate
of the seeker, and their output is used to estimate _l as the
angular rate of the seeker minus any residual tracking
error. Although birds might use their head to track targets
smoothly like a missile seeker, it has not yet been tested
whether or how they estimate the line-of-sight rate _l. It is
likely that the sensory output of the vestibular system could
be used for this purpose. However, whereas the vestibular
system is well set up to sense angular acceleration of the
head, integrating vestibular output to estimate angular vel-
ocity will incur drift, and it remains uncertain whether the
vestibular system can also measure the angular rate of the
head directly [12–15].

In practice, birds may not track targets smoothly like a
missile seeker, typically interspersing periods of stabilized
gaze with fast saccadic head motions. This being so, it is
plausible that they might instead use their vestibular output
to stabilize their head rotationally in an inertial frame of refer-
ence [16], such that the visual drift of the target across the
retina would provide a direct measure of the inertial line-
of-sight rate _l. Finally, vision alone can provide a fixed refer-
ence direction if there are distant landmarks present whose
direction does not change appreciably with the attacker’s
self-motion. For example, over the short intervals that are rel-
evant to pursuit, the sun’s azimuth provides a fixed reference
direction against which the rotation of the line-of-sight could
be measured [17]. On the other hand, a hawk chasing a target
through clutter may see no distant background against which
to measure the target’s motion, and the direction of nearby
visual features will change quickly as a result of its self-
motion. It therefore seems reasonable to assume that animals
implementing PN will do so with the aid of inertial sensors,
whether using these to measure the rotation rate of their head
or to stabilize their head rotationally.

Unlike the line-of-sight rate _l, the deviation angle δ can be
measured without an inertial reference. For instance, if the
background is close enough to provide motion parallax
cues, then δ can be measured visually by comparing the reti-
nal coordinates of the target with those of the vanishing point
of the translational optic flow field, which corresponds to the
direction of the pursuer’s self-motion. Alternatively, the devi-
ation angle could be estimated from the contralateral
asymmetry of the translational optic flow field that is pro-
duced when a bird looks directly at its target [18]. The
hypotheses that an organism implements PP versus PN gui-
dance therefore make fundamentally different assumptions
regarding its sensory capabilities. Clearly, the hypothesis
that an organism implements PNP guidance rests on a
different set of assumptions again. It follows that a phenom-
enological model of observed pursuit behaviour may be
informative as to the physiological pathways involved. For
instance, Brighton & Taylor [11] found that whereas PNP or
PN guidance could both successfully model Harris’ hawk
attack trajectories, PP guidance could not. Given the necess-
ary involvement of a PN element, this result would seem to
imply that hawks must be able to measure the line-of-sight
rate _l in an inertial frame of reference. However, as we now
show, other mixed guidance models that do not imply the
ability to measure _l in an inertial frame of reference may
model Harris’ hawk trajectories just as well as, or better
than, the original PNP guidance law.

Here we describe a new dataset comprising n = 228 unob-
structed pursuit trajectories flown by N = 4 Harris’ hawks
(figure 2). The same data are used as baseline data elsewhere
in an analysis of obstacle avoidance in obstructed pursuit [19]
using a slightly different fitting method (see Methods and
material). Here we model these unobstructed pursuit data
using the original PP, PN and PNP guidance laws described
above, together with new versions of the PN and PNP gui-
dance laws in which the line-of-sight rate is defined with
respect to the visual background behind the target. This back-
ground line-of-sight rate, which we write as B _l, is defined as
the difference between the retinal drift of the target and the
retinal drift of the background. It can therefore be measured
without the involvement of inertial sensors or an inertial
reference, in contrast to the inertial line-of-sight rate, which
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Figure 2. Experimental set-up of pursuit task. (a) Schematic of experimental set-up from an overhead view. The approximate positions of the 20 motion capture
cameras are indicated by the camera icons, while the bird icons indicate the three alternative starting positions for the bird. The approximate positions of the six
pulleys are shown as red circles, and the six alternative lure paths are shown as green lines. To prevent the bird from predicting the lure’s path, we laid dummy tow
lines for each trial (dotted green line), in addition to the motor-connected tow line (solid green line). We randomized the lure path between trials. (b) Photograph
of the set-up, from the perspective of the middle starting position. (c) Schematic drawing of a Harris’ hawk wearing the rigid templates (black) to which we attached
the spherical retroreflective motion capture markers (white circles).
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we write as I _l. Having reframed PN and PNP guidance
by replacing B _l with I _l, we test the success of the result-
ing background-PN and background-PNP guidance laws
in explaining the measured hawk trajectories relative to
inertial-PN and inertial-PNP. Although background-PN per-
forms poorly for reasons we explain below, we find that
background-PNP explains our data at least as effectively as
inertial-PN, and almost as well as inertial-PNP. This has
important implications for the sensorimotor pathways that
are plausibly involved in implementing pursuit guidance in
hawks and other flying animals, since background-PNP can
be implemented without necessarily involving inertial
sensors in the guidance loop.
2. Theoretical framework
Figure 1 shows the geometry of a pursuit involving a hawk
chasing a terrestrial target over a flat horizontal surface. We
will neglect any vertical displacement of the pursuer, which
is assumed to be small in comparison with its horizontal dis-
placement. The line-of-sight vector r is defined as the position
vector of the target with respect to the pursuer in an external
frame of reference defined by the orthonormal basis vectors
1x and 1y. The pursuer’s flight path angle γ is defined as
the signed angle that its velocity vector vP makes with the
external reference direction 1x. Meanwhile, the line-of-sight
angle λ is defined as the signed angle that the line-of-sight
vector r makes with the reference direction 1x, and the devi-
ation angle δ is defined as the signed angle that the line-of-
sight vector r makes with the pursuer’s velocity vector vP.

It is clear from figure 1 that the deviation angle δ is inde-
pendent of the choice of external reference direction 1x, so can
in principle be measured egocentrically. By contrast, both the
flight path angle γ and the line-of-sight angle λ depend on the
choice of external reference direction 1x, and must therefore
be measured exocentrically. To begin with, we will fix 1x
and 1y so that they define an inertial frame of reference FI ,
and will use the notation I _g and I _l to denote the time deriva-
tives of γ and λ in FI . With these definitions, the proportional
pursuit (PP) guidance law commands turning as

I _gðtÞ ¼ �Kdðt� tÞ, ð2:1Þ
where K is a guidance constant and τ is a fixed time delay. By
contrast, the proportional navigation (PN) guidance law
commands turning as

I _gðtÞ ¼ NI _lðt� tÞ, ð2:2Þ
where N is another guidance constant. Finally, the PNP gui-
dance law that Brighton & Taylor [11] defined commands
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Figure 3. Harris’ hawk attack geometry with background. Here we add to the
geometry of figure 1 a background feature (B) that lies close to the target
(T ). We use the rotating orthonormal basis vectors 1x0 and 1y0 carried with
the bird to define the background reference frame FB, where 1x0 points in
the direction of the vector b from the hawk (P) to the background feature
(B). Note that FB is defined instantaneously by the position of the hawk
relative to the background patch against which it is viewing the target. As
such, the background reference frame FB is constantly updated, in contrast
to the inertial reference frame FI , which is fixed for all time. Rewriting the
line-of-sight angle λ as Il shows that this is measured with respect to the
inertial reference direction 1x, in contrast to the background line-of-sight
angle Bl which is measured with respect to the background reference direc-
tion 1x0. The time derivative of the line-of-sight angle with respect to FB is
called the background line-of-sight rate B _l, and is fed back to command
turning under the background-PN and background-PNP guidance laws.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230071

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 S

ep
te

m
be

r 
20

23
 

turning as

I _gðtÞ ¼ NI _lðt� tÞ � Kdðt� tÞ, ð2:3Þ

where, for sake of simplicity, the same time delay τ is
assumed to hold for both elements.

Because we have fixed 1x and 1y with respect to an inertial
frame of reference, practical methods of estimating the iner-
tial line-of-sight rate I _l are expected to involve the fusion
of visual and inertial information. One possibility is to track
the target visually by turning the head, and to measure the
angular rate of the head inertially as a proxy for I _l. An
alternative is to stabilize the head inertially, and to measure
the retinal drift of the target visually as a proxy for I _l. How-
ever, we may choose to use other sets of basis vectors to
define the line-of-sight rate, and in this case the sensory
basis of its measurement may differ. For instance, we may
choose to define a new external reference direction 1x0 visu-
ally (e.g. as the direction vector of some background feature
seen by the pursuer), and may use 1x0 and its normal 1y0 to
define a new background frame of reference FB (figure 3).
If the background feature used to define 1x0 is sufficiently dis-
tant (e.g. the sun’s disc), then FB will be a non-rotating frame
of reference. This being so, it is possible to estimate I _l visu-
ally by comparing the retinal drift of the target with the
retinal drift of the distant background. On the other hand,
if the background feature is close to the pursuer (e.g. a
patch of ground beneath the target), then FB will rotate as
the pursuer undergoes translational motion. In this case,
the difference between the retinal drift of the target and the
retinal drift of the background is no longer a proxy for the
inertial line-of-sight rate I _l, but still measures a well-defined
quantity that we will call the background line-of-sight rate
B _l (figure 3).

In summary, we have one version of the line-of-sight rate
(I _l) that is defined in an inertial frame of reference FI , and
another (B _l) that is defined with respect to the background
frame of reference FB. In computing the background line-
of-sight rate B _l, we will assume that the distance between
the target and the background feature used to define FB is
negligibly small, which is reasonable in the case of a hawk
chasing a terrestrial target moving over the ground. With
this restriction, the background line-of-sight rate (B _l) describes
only the component of the relative motion of the target and
pursuer that is due to the target’s motion (see electronic sup-
plementary material, Text). By contrast, the inertial line-of-
sight rate (I _l) describes the total motion of the target relative
to the pursuer, so also contains information on the pursuer’s
own self-motion. Substituting B _l for I _l in the PN guidance
law, therefore, loses information on self-motion that is useful
for steering an effective intercept. Thus, the following guidance
law, which we call background-PN to distinguish it from
the inertial form of the PN guidance law described above, is
unlikely to steer attack trajectories successfully:

I _gðtÞ ¼ NB _lðt� tÞ: ð2:4Þ

However, as we show in the electronic supplementary
material, Text, substituting B _l for I _l in the mixed PNP gui-
dance law results in no net loss of information, because of
the complementary effect of the deviation angle δ. With
this in mind, we define the following new guidance law,
which commands steering as:

I _gðtÞ ¼ NB _lðt� tÞ � Kdðt� tÞ, ð2:5Þ
which we call the background-PNP guidance law to dis-
tinguish it from the inertial form of the PNP guidance law
described above. Here we ask whether background-PNP
can model Harris’ hawk attack trajectories as successfully
as inertial-PNP, and compare this with the performance of
the inertial-PN, background-PN and PP guidance laws in
modelling the same data.
3. Results
3.1. Guidance model simulations
We recorded N = 4 Harris’ hawks pursuing an artificial lure
being pulled around a set of pulleys on n = 228 trials, and
used a motion capture system to measure the trajectories of
the hawk and target at 200Hz. For each trial, we simulated
the horizontal components of the hawk’s measured flight tra-
jectory under the assumption that its steering was modelled
by any one of the five candidate guidance laws in table 1.
We matched the hawk’s simulated flight speed to its
measured flight speed, which allowed us to simulate its tra-
jectory numerically given knowledge of its initial position
and the lure’s trajectory throughout the trial (see Methods
and material for details). This is the same modelling approach
taken in our previous work [4,5,11], but with the addition of
two new candidate guidance laws in the form of background-
PN and background-PNP. We begin by fitting the parameters
of these five guidance models independently to each flight,
before fitting the same parameters globally to all flights to
guard against over-fitting. Throughout the paper, we use
hat notation (e.g. N̂) to denote a parameter estimate for a
single flight, tilde notation (e.g. ~N) to denote the median of
these parameter estimates over all n = 228 flights, and breve



Table 1. Guidance laws fitted to the data, together with the equations describing them, and the sensory information they imply that a hawk would require to
implement a pursuit.

model equation information required

PP I _gðtÞ ¼ �Kdðt � tÞ visual-only

inertial-PN I _gðtÞ ¼ NI _lðt � tÞ visual-inertial

background-PN I _gðtÞ ¼ NB _lðt � tÞ visual-only

inertial-PNP I _gðtÞ ¼ NI _lðt � tÞ � Kdðt � tÞ visual-inertial

background-PNP I _gðtÞ ¼ NB _lðt � tÞ � Kdðt � tÞ visual-only
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notation (e.g. �N) to denote the globally fitted values of the
model parameters. We report two-tailed test statistics
throughout, and treat each flight as an independent sample,
noting that the sample sizes we state represent technical
(n = 228) rather than biological (N = 4) replicates.

3.2. Guidance models fitted independently to each
flight

We begin by fitting the parameters N, K and τ for each flight
independently under the five candidate guidance models in
table 1. We do so by finding the parameter values N̂, K̂
and t̂ that minimize the root mean square (RMS) error (e)
between the measured and simulated trajectories for each
flight (figure 4). The results of the model fitting are summar-
ized in table 2 and figure 5, which show that the two
alternative forms of the PNP guidance law are both capable
of fitting the data closely. In fact, the median RMS errors
under inertial-PNP (~e ¼ 38mm; 95% bootstrapped CI: 28,
51mm) and background-PNP (~e ¼ 38mm; 95% bootstrapped
CI: 29, 51mm) were statistically indistinguishable over the
n = 228 flights (sign test: p = 0.64). Nevertheless, the inertial-
PNP and background-PNP models are not equivalent, as
can be seen from the fact that the best-fitting models under
these two alternative forms of PNP guidance generate differ-
ent simulated trajectories for the example flight plotted in
figure 4. But how, exactly, does this difference arise?

The median best-fitting values of N were similar under
inertial-PNP ( ~N ¼ 0:77; 95% bootstrapped CI: 0.66, 0.86)
and background-PNP ( ~N ¼ 0:66; 95% bootstrapped CI: 0.51,
0.82), and their respective confidence intervals each
contain the best-fitting value of N = 0.7 that Brighton &
Taylor [11] identified under inertial-PNP in their previous
study of Harris’ hawks. Likewise, the median best-fitting
value of K under inertial-PNP (~K ¼ 0:9 s�1; 95% bootstrapped
CI: 0.51, 1.4 s−1) was statistically indistinguishable from
the best-fitting value of K = 1.0 s−1 that Brighton &
Taylor [11] identified under inertial-PNP. On the other
hand, the best-fitting values of K under background-PNP
were significantly higher than those under inertial-PNP
(sign test: p < 0.0001; n = 228 flights), and the confidence inter-
val for their median (~K ¼ 3:4 s�1; 95% bootstrapped CI: 2.8,
3.8 s−1) does not contain the best-fitting value of K = 1.0 s−1

identified under inertial-PNP by Brighton & Taylor [11].
This is a striking result, because whereas the parameter K
describes how the pursuer responds to the target deviation
angle, which is defined in the same way in both models,
the parameter N describes how the pursuer responds to the
target line-of-sight rate, which is defined differently under
inertial-PNP and background-PNP. Yet, it is the fitted
values of the parameter K which are sensitive to the defi-
nition of the line-of-sight rate; a result which we explain
fully in the Discussion.

In any case, the spread of the fitted values of K under
both forms of PNP is suggestive of over-fitting (figure 5).
This evidence of over-fitting is particularly clear for inertial-
PNP, since the interquartile range of the fitted values of K
spans zero (figure 5), which means that even the sign of
this guidance parameter estimate is inconsistent between
flights. Moreover, although inertial-PN fits the data signifi-
cantly less well than inertial-PNP over the n = 228 flights
(sign test: p < 0.0001), which reflects the fact that inertial-PN
is just a special case of inertial-PNP with K = 0, it is clear by
inspection of table 2 that inertial-PN is still capable of fitting
the data closely (~e ¼ 71mm; 95% bootstrapped CI: 54, 90
mm). On the other hand, PP and background-PN, which
have the same number of fitted parameters as inertial-PN,
fit the data significantly less closely than inertial-PN (sign
test: p < 0.0001; n = 228 flights), allowing us to reject them
conclusively as models of the data.

In conclusion, we are left with the unequivocal result that
inertial-PN (requiring visual-inertial information) models the
data much better than either PP or background-PN (for
which only visual information is required). We also have the
equivocal result that inertial-PNP (requiring visual-inertial
information) and background-PNP (requiring visual-only
information) can each fit the data even more closely than
inertial-PN, albeit at the risk of over-fitting, and with no way
of distinguishing from this analysis which of inertial-PNP
and background-PNP is the better model. It follows that
whereas visual-inertial information is necessary to explain
the data if only the line-of-sight rate is used to command steer-
ing (i.e. under PN), visual-only information may be sufficient
if information on the deviation angle is added to information
on the line-of-sight rate (i.e. under PNP).
3.3. Guidance models fitted globally to all flights
The results of the previous section show that inertial-PN with
two fitted guidance parameters per flight (i.e. N̂ and t̂) pro-
vides a reasonably close fit to the data, but a less close fit than
either inertial-PNP or background-PNP with three fitted par-
ameters per flight (i.e. N̂, K̂ and t̂). Since the number of fitted
parameters scales linearly with the number of flights in this
case, it is challenging to interpret this difference from a
model selection perspective owing to the risk of over-fitting.
In this section, we therefore follow Brighton & Taylor [11] in
taking the complementary approach of fitting a single set
of parameters under each guidance model to all n = 228
flights, such that we fit only two parameters in total for PP,
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Figure 4. Measured trajectory for one example flight compared with simulations under inertial-PNP and background-PNP. Given the measured trajectories of the
hawk (blue) and lure (red), we generate the hawk’s simulated trajectory (black) by solving for the guidance model parameters that minimize the RMS error (ê )
between the measured and simulated trajectories. (a) Best-fitting simulation under inertial-PNP, which assumes that the line-of-sight rate is measured in an inertial
frame of reference (ê ¼ 119 mm). (b) Best-fitting simulation under background-PNP, which assumes that the line-of-sight rate is measured in the background
frame of reference (ê ¼ 58 mm). Note that in this particular example, the background-PNP model fits the measured data more closely than the inertial-PNP model;
in other examples, this situation may be reversed. Grid size: 1 m.

Table 2. Summary of the results of fitting the five alternative guidance models to each flight independently.

guidance median (95% CI) of median (95% CI) of best-fitting

model RMS error (mm) guidance parameters

PP ~e ¼ 135 ð111, 154Þ ~K ¼ 4:4 s�1 ð3:2, 6:1Þ
~t ¼ 0:030 s ð0:015, 0:045Þ

inertial-PN ~e ¼ 71 ð54, 90Þ ~N ¼ 0:85 ð0:77, 0:91Þ
~t ¼ 0:060 s ð0:050, 0:068Þ

background-PN ~e ¼ 145 ð113, 203Þ ~N ¼ 0:66 ð0:51, 0:82Þ
~t ¼ 0:073 s ð0:050, 0:090Þ

inertial-PNP ~e ¼ 38 ð28, 51Þ ~N ¼ 0:77 ð0:66, 0:86Þ
~K ¼ 0:9 s�1 ð0:51, 1:4Þ
~t ¼ 0:058 s ð0:040, 0:065Þ

background-PNP ~e ¼ 38 ð29, 51) ~N ¼ 0:66 ð0:51, 0:82Þ
~K ¼ 3:4 s�1 ð2:8, 3:8Þ
~t ¼ 0:060 s ð0:048, 0:070Þ
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inertial-PN and background-PN, and only three parameters
in total for inertial-PNP and background-PNP. Specifically,
we find the unique parameter values of τ and N and/or K
that minimize the median RMS error (~e) under each of the
five guidance models. In practice, because we perform this
optimization using an exhaustive search procedure, the
global optima for PP, inertial-PN and background-PN are
contained within the optimizations of inertial-PNP and back-
ground-PNP, noting that PN and PP are just special cases of
PNP with K = 0 and N = 0, respectively. We therefore plot ~e
as a function of N, K and τ under inertial-PNP and back-
ground PNP in figure 6, and summarize the global
optimum for each guidance law in table 3.

Fitting the guidance models globally to all flights (table 3)
corroborates and extends the results obtained by fitting the
guidance models independently to each flight (table 2).
Specifically, the goodness of fit of the guidance models is
still similar under inertial-PNP (~e ¼ 141mm; 95% boot-
strapped CI: 123, 189mm) and background-PNP (~e ¼ 150
mm; 95% bootstrapped CI: 126, 187mm), and the difference
in their RMS errors remains statistically insignificant over
the n = 228 flights (sign test: p = 0.55). Moreover, neither
inertial-PNP (sign test: p = 0.44) nor background-PNP (sign
test: p = 1.0) provides a significantly closer fit than inertial-
PN (~e ¼ 174mm; 95% bootstrapped CI: 148, 225mm) when
their model parameters are fitted globally to all flights
(table 3). By contrast, globally fitted PP displays compara-
tively poor goodness of fit (~e ¼ 255mm; 95% bootstrapped
CI: 224, 277mm), modelling the data significantly less
well than inertial-PN (sign test: p = 0.007). Globally fitted
background-PN is even less successful at modelling
the data, with a very high median RMS error indeed
(~e ¼ 523mm; 95% bootstrapped CI: 459, 636mm). We con-
clude that the steering of the n = 228 Harris’ hawk
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attack trajectories is comparably well modelled by inertial-
PNP, background-PNP and inertial-PN when the model
parameters are fitted globally to all flights. It follows that
inertial-PN provides the most parsimonious model assuming
use of visual-inertial information, but that background-
PNP provides a reasonable model assuming use of visual
information only.
The parameter estimates for the PNP guidance models
fitted globally to all flights further corroborate and extend
the results obtained by fitting those same guidance models
independently to each flight. Specifically, the parameter esti-
mates for N are similar under globally fitted inertial-PNP
( �N ¼ 0:8; 95% bootstrapped CI: 0.5, 0.9) and globally fitted
background-PNP ( �N ¼ 0:9; 95% bootstrapped CI: 0.7, 1.0),



Table 3. Summary of the results of fitting the five alternative guidance models globally to all flights.

median (95% CI) of globally optimized values (95% CI)

model RMS error (mm) of guidance parameters (SI units)

PP ~e ¼ 255 ð224, 277Þ �K ¼ 5:0 ð4:85:0Þ
�t ¼ 0 s ð0, 0Þ

inertial-PN ~e ¼ 174 ð148, 225Þ �N ¼ 1:0 ð0:9, 1:1Þ
�t ¼ 0:055 s ð0:035, 0:075Þ

background-PN ~e ¼ 523 ð459, 636Þ �N ¼ 0:5 ð0:3, 0:8Þ
�t ¼ 0:105 s ð0:065, 0:150Þ

inertial-PNP ~e ¼ 141 ð123, 189Þ �N ¼ 0:8 ð0:5, 0:9Þ
�K ¼ 2:4 ð0:6, 3:6Þ
�t ¼ 0:005 s ð0, 0:030Þ

background-PNP ~e ¼ 150 ð126, 187Þ �N ¼ 0:9 ð0:7, 1:0Þ
�K ¼ 3:6 ð3:0, 3:8Þ
�t ¼ 0:015 s ð0, 0:045Þ
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which in turn are close to the median values of the parameter
estimates for N under independently fitted inertial-PNP
( ~N ¼ 0:8) and independently fitted background-PNP
( ~N ¼ 0:7). Likewise, the parameter estimate for K under glob-
ally fitted background-PNP (�K ¼ 3:6 s�1; 95% bootstrapped
CI: 3.0, 3.8 s−1) is close to the median value of the parameter
estimate for K under independently fitted background-PNP
(~K ¼ 3:4), and whilst the parameter estimate for K under glob-
ally fitted inertial-PNP (�K ¼ 2:4 s�1; 95% bootstrapped CI: 0.6,
3.6 s−1) is a little higher than the median value of the par-
ameter estimate for K under independently fitted inertial-
PNP (~K ¼ 0:9), the confidence interval of the former neverthe-
less contains the latter. Finally, when fitted globally to all
flights, both PNP models have shorter optimal delays (iner-
tial-PNP: �t ¼ 0:005 s; 95% bootstrapped CI: 0, 0.03 s;
background-PNP: �t ¼ 0:015 s; 95% bootstrapped CI: 0, 0.045
s) than when those delays are fitted independently to each
flight (see tables 2 and 3).

Related to these results, it is clear by inspection of figure 6
that the goodness of fit of the globally fitted guidance models
is more sensitive to the value of K for background-PNP than
for inertial-PNP. That is, whereas ~e is relatively insensitive to
K over much of the range plotted for inertial-PNP (i.e. the
slope @~e=@K is small in figure 6a,c), the median RMS error ~e
decreases rapidly with increasing K for background-PNP at
low values of K (i.e. the slope @~e=@K is strongly negative in
figure 6d,f ). This presumably explains why the bootstrapped
confidence interval for �K is tighter for background-PNP
(95% bootstrapped CI: 3.0, 3.8 s−1) than for inertial-PNP
(95% bootstrapped CI: 0.6, 3.6 s−1).

In summary, although both globally fitted versions of
the PNP guidance law fit the steering of Harris’ hawk
attack trajectories comparably well, the best-fitting values
of their three guidance parameters are identified with
greater certainty for background-PNP than for inertial-
PNP. However, globally fitted inertial-PN fits the data
almost as closely as inertial-PNP and globally fitted back-
ground PNP, so provides a more parsimonious model of
the data with only two fitted guidance parameters. As an
intuitive graphical summary of the model respective fits to
the data, we compare the measured trajectories with those
simulated under each globally fitted model, for sample
flights corresponding to the first, second and third quartiles
of the RMS error for each model (figure 7). To illustrate how
the simulations of globally fitted inertial-PN, inertial-PNP
and background-PNP differ for the same flight, we also
compare simulations under the global best-fit parameters
for nine randomly selected flights (figure 8). Given that PP
and background-PN perform much more poorly by com-
parison, we carry forward only the globally fitted inertial-
PNP, background-PNP and inertial-PN guidance models
for formal model validation.
3.4. Model validation
As a final validation step, we apply k-fold cross-validation to
each of the three globally fitted guidance models (see
Methods and material for details). This entails splitting the
n = 228 flights into k = 12 subsets and applying the global
model-fitting approach to the data k = 12 times, leaving out
a different one of the k = 12 subsets as a validation subset.
The predictive power of the model is then assessed by com-
puting the median RMS error ~e for the validation subset,
using the model parameters fitted to the k− 1 = 11 subsets.
We summarize the results of this validation step by reporting
the mean of the median RMS error (~e) over all k = 12 vali-
dation subsets for each guidance model. The results of this
k-fold cross-validation show that the order of model predic-
tive ability mirrors the order of model success under the
global fitting approach. Specifically, inertial-PNP has the
best predictive power (~e ¼ 173mm), followed by back-
ground-PNP (~e ¼ 179mm), then inertial-PN guidance
(~e ¼ 191mm). In each case, the mean of the median RMS
error for the validation subsets not included in the model fit-
ting (~e) is only 10–20% higher than the median RMS error
when all of the data are included in the model fitting (~e), con-
firming that the approach of fitting the model parameters
globally to all flights is successful in avoiding over-fitting to
the sample.
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Figure 7. Simulated trajectories of those flights whose RMS error is at the lower, middle and upper quartiles under globally fitted inertial-PN, inertial-PNP and back-
ground-PNP. Given the measured trajectories of the hawk (blue) and lure (red), we generate the hawk’s simulated trajectory (black) by solving for the model parameters
that minimize the median RMS error (~e) between the measured and simulated trajectories across all n = 228 flights. Simulations are shown for: (a,d,g) inertial-PN at
�N ¼ 1:0, �t ¼ 0:055 s; (b,e,h) inertial-PNP at �N ¼ 0:8, �K ¼ 2:4 s�1, �t ¼ 0:005 s; (c,f,i) background-PNP at �N ¼ 0:9, �K ¼ 3:6 s�1, �t ¼ 0:015 s; see text for
details. Flights are sampled by plotting the simulations for which ê corresponds to the first (a–c), second (d–f ) and third (g–i) quartiles of the RMS error e for each
guidance law. The specific value of ê associated with each simulation is shown in the bottom left corner of each panel. Grid size: 1 m.
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Figure 8. Comparison of nine randomly selected flights with simulations under globally fitted inertial-PN, inertial-PNP and background-PNP. Given the measured
trajectories of the hawk (blue) and lure (red), we generate the hawk’s simulated trajectory (black) by solving for the model parameters that minimize the median
RMS error (~e) between the measured and simulated trajectories across all n = 228 flights. Simulations are shown for: inertial-PN at �N ¼ 1:0, �t ¼ 0:055 s; inertial-
PNP at �N ¼ 0:8, �K ¼ 2:4 s�1, �t ¼ 0:005 s; background-PNP at �N ¼ 0:9, �K ¼ 3:6 s�1, �t ¼ 0:015 s; see text for details. To indicate how well the simulated
trajectories fit the measured trajectories through time, we connect equivalent time points between the measured trajectory and the simulated trajectory with
straight black lines. Grid size: 1 m.
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4. Discussion
The results of our study confirm and extend the results of
previous work on Harris’ hawk pursuit by Brighton &
Taylor [11]. Whereas the previous study [11] analysed a
sample of n = 50 flights collected outdoors from N = 5 birds
using multi-camera videogrammetry, the present study ana-
lysed a sample of n = 228 flights collected indoors from N =
4 birds using motion capture, with one individual shared
across both samples. The experimental set-up was similar in
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each case, with an artificial lure being dragged around a set
of pulleys producing several unpredictable turns down a
zigzag course. We begin by considering the extent to which
the present work confirms the conclusions of the earlier
study by Brighton & Taylor [11], before exploring the several
ways in which it extends these.
lishing.org/journal/rsif
J.R.Soc.Interface

20:20230071
4.1. Harris’ hawk pursuit trajectories are well modelled
by inertial-PNP and inertial-PN

Consistent with the earlier study by Brighton & Taylor [11],
we found that inertial-PNP modelled our data significantly
more closely than inertial-PN when fitted to each flight inde-
pendently. However, whereas Brighton & Taylor [11] also
found that their globally fitted inertial-PNP model (with
only three parameters in total) fitted their sample of n = 50
flights more closely than their independently fitted inertial-
PN model (with 100 parameters in total), the same result
does not hold true for the much larger sample of n = 228
flights that we collected here (tables 2 and 3). Given the
obvious risk of over-fitting that exists when fitting the
model parameters to each flight independently, we conclude
that our data provide no strong statistical reason to favour
inertial-PNP over inertial-PN. On the contrary, inertial-PN
offers the more parsimonious model of our data if it is
assumed that hawks use visual-inertial information to
guide their pursuit behaviour (table 1). The alternative PP
guidance law that we and Brighton & Taylor [11] tested
requires only visual information (table 1), but whereas
Brighton & Taylor [11] found that PP modelled their
sample of n = 50 flights about as closely as inertial-PN, PP
produced a significantly poorer fit than inertial-PN to the
n = 228 flights that we collected here, regardless of whether
the models were fitted to each flight independently (sign
test: p < 0.0001) or to all flights globally (sign test: p = 0.007).
We therefore reject PP as an adequate model of Harris’
hawk pursuit behaviour.

The numerical values of the guidance parameters that we
have fitted here also corroborate the results of the earlier
study on Harris’ hawks by Brighton & Taylor [11]. The par-
ameter estimates display a particularly high degree of
consistency for inertial-PN: the median value of N fitted to
each flight independently was ~N ¼ 0:9 in both studies,
whilst the globally optimized value of N was �N ¼ 1 in each
case. Such quantitative repeatability is rare in studies of
animal behaviour [20], which makes this a particularly strik-
ing result given that significantly higher values of N were
identified in other studies of peregrine falcons [4,5]. More-
over, the parameter setting of N = 1 that we have twice
identified empirically in Harris’ hawks under inertial-PN
is also the value required theoretically to produce the tail-
chasing behaviour that is typical of Harris’ hawk pursuit
flights [11]. Conversely, the higher values of N that have
been identified previously in peregrine falcons [5] are necess-
ary to head off a target during interception. Hence, the
parameter estimates that we observe empirically under iner-
tial-PN are not only consistent within species but also make
functional sense between species.

The parameter estimates for N and K under inertial-PNP
are similar, but not identical, between the present study and
the previous work on Harris’ hawks in [11]. Specifically,
whereas parameter settings of �N ¼ 0:7 and �K ¼ 1:2 s�1 were
found to be globally optimal across the n = 50 flights mod-
elled by Brighton & Taylor [11], we found parameter
settings of �N ¼ 0:8 and �K ¼ 2:4 s�1 to be optimal across the
n = 228 flights that we analysed here. Noting that the best-
fitting value of K is conditional on the setting of the time
delay τ (figure 6), it is likely that this difference in the fitted
values of K between the two studies is coupled to the differ-
ence in the fitted time delay, which was shorter in the current
study (�t ¼ 0:005 s) than the previous one (�t ¼ 0:09 s). More-
over, it is plausible that this difference in the fitted delay
relates to the different measurement technologies used,
since the small retroreflective markers used in the previous
study were more-or-less rigidly fixed to the body, whereas
the larger polystyrene balls that were loosely attached to
the birds studied by Brighton & Taylor [11] could have
lagged the body’s motion during turning.

4.2. Background-PNP models the pursuit trajectories
almost as closely as inertial-PNP

The inertial-PN and inertial-PNP models that we compared
in the previous section both require the target line-of-sight
rate _l to be measured in an inertial frame of reference,
which we denote by writing _l ¼ I _l. As discussed in the
Introduction, the hypothesis that Harris’ hawks implement
inertial-PN or inertial-PNP therefore implies involvement of
the vestibular system in the guidance loop. By contrast, PP
guidance only requires measurement of the target deviation
angle δ with respect to the pursuer’s velocity vector, which
can be done using visual information alone [18]. For instance,
the target deviation angle could be measured by comparing
the retinal position of the target with the retinal position
of the singularity in the optical flow field, which perfectly
coincides with the direction of travel during pure transla-
tional motion. However, as we have already found that
PP does not model our data as closely as inertial-PN or
inertial-PNP, visual assessment of the target deviation angle
alone is unsupported as an explanation of our hawks’
observed pursuit behaviour.

On the other hand, the background-PN and background-
PNP guidance laws that we have defined and tested can also
be implemented using visual information alone. This is
because they each define the target line-of-sight rate _l with
respect to its visual background, which we denote by writing
_l ¼ B _l. Optimizing their guidance parameters globally
shows that background-PN provides a very poor model of
the data (table 3). However, background-PNP performs
almost as well as inertial-PNP in modelling our data (table
3), regardless of whether the model parameters are fitted to
each flight independently (sign test: p = 0.64; n = 228) or to
all flights globally (sign test: p = 0.55; n = 228). Hence, if
Harris’ hawks do implement their pursuit guidance using
visual information alone, then it follows that they must be
implementing background-PNP rather than PP or back-
ground-PN among the set of five candidate models that we
have tested (table 1).

Noting that background-PNP is just the linear sum of PP
and background-PN, these findings lead to three fundamental
questions. First, what sensory information is gained by combin-
ing measurements of target deviation angle δ and background
line-of-sight rate B _l in background-PNP? Second, how does
this sensory information compare with the sensory information
that is obtained by combining measurements of target



royalsocietypub

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 S

ep
te

m
be

r 
20

23
 

deviation angle δ and inertial line-of-sight rate I _l in inertial-
PNP? Third, given the superficial similarity between back-
ground-PNP and inertial-PNP, how and why do their
respective guidance parameters differ as we have found (see
Results)? We answer each of these questions in the next section,
through an in-depth analysis of the various guidance laws.
lishing.org/journal/rsif
J.R.Soc.Interface

20:20230071
4.3. A functional comparison of the different guidance
laws

To understand why background-PN explains our data so
poorly, whereas background-PNP explains it so well, it is
helpful to begin by considering why inertial-PN produces
an effective tail-chase at the best-fitting parameter value of
�N ¼ 1. It is clear by inspection of the inertial-PN guidance
law (table 1), that setting N = 1 simply equates the pursuer’s
inertial turn rate to the target’s delayed inertial line-of-sight
rate. Hence, if the pursuer’s initial velocity is directed at the
target, then inertial-PN at N = 1 will keep the pursuer’s vel-
ocity directed at the target if the delay is small. This will
serve to correct any target motion across the line-of-sight,
thereby commanding a tail-chase. The same holds true if
we replace the inertial line-of-sight rate I _l with the back-
ground line-of-sight rate B _l, because the change in direction
of the line-of-sight resulting from the target’s own motion
is independent of whether it is measured with respect to an
inertial frame of reference or the visual background. This
being so, why does background-PN perform so much
worse than inertial-PN in modelling our data?

The reason for this can be understood by comparing the
behaviour of inertial-PN and background-PN when the pur-
suer’s velocity is not directed at the target initially. For
clarity, we will also assume that the target remains stationary,
although this is not necessary to the argument. Under these
circumstances, the component of the pursuer’s motion across
the line-of-sight will naturally cause a change in the direction
of the line-of-sight to the target. Furthermore, it will cause the
same change in the direction of the line-of-sight to any back-
ground feature falling close behind the target (i.e. any
background feature whose distance to the target is negligibly
small). It follows that whereas the change in direction of the
target line-of-sight will be registered fully by inertial-PN feed-
ing back the inertial line-of-sight rate I _l, it will not be
registered at all by background-PN feeding back the back-
ground line-of-sight rate B _l. This is because the apparent
motion of the target due to the pursuer’s own self-motion
will be cancelled by the apparent motion of the background
against which it is measured. Hence, whereas inertial-PN
will tend to correct for any initial misdirection of the pursuer’s
velocity vector in the same way that it corrects for actual target
motion, background-PN has no such tendency (see electronic
supplementary material, Text).

It follows that background-PN will be ineffective at deal-
ing with any difference in the direction of the pursuer’s
velocity vector and the target’s line-of-sight that may exist
at the outset of the pursuit or that may subsequently be intro-
duced by any error or delay in the pursuer’s response to
target motion. Since this difference equates to the deviation
angle δ, this result also explains why feeding back the devi-
ation angle δ in addition to the background line-of-sight
rate B _l makes background-PNP successful in producing a
tail-chase from any set of initial conditions. The same
reasoning can also be used to explain the observed simi-
larities and differences in the numerical values of the
guidance parameters fitted under background-PNP and iner-
tial-PNP. Specifically, to produce the tail-chasing behaviour
that is observed in Harris’ hawks, the component of the
line-of-sight rate which results from the target’s motion
must be fed back with unity gain, which explains why the
best-fitting value of the guidance parameter N is �N ¼ 1
under both background-PNP and inertial-PNP. However, in
the case of inertial-PNP, this line-of-sight rate feedback will
also have the effect of correcting for any changes in the
line-of-sight direction that result from the pursuer’s own
self-motion. We should therefore expect that the deviation
angle will need to be fed back with lower guidance gain
under inertial-PNP than under background-PNP (see elec-
tronic supplementary material, Text), which is what we
observe when comparing the best-fitting values of the gui-
dance constant K. Specifically, the guidance gain associated
with this deviation angle feedback takes the value �K ¼ 2:4
under inertial-PNP and �K ¼ 3:6 under background-PNP.
4.4. Mechanization of the three respective guidance
laws

The five guidance models that we have fitted to our data
(table 1) are phenomenological models of the bird’s guidance
and control. Nonetheless, the practical implementation of
each implies a different underlying physiological mechanism.
Specifically, the inputs to these guidance laws each entail a
different mechanization, which we illustrate by replacing
the black box of each input–output relationship (table 1)
with a block diagram describing the hypothesized infor-
mation flow (figure 9). It is important to note that these
block diagrams are not unique, in the sense that there may
be many different ways of implementing the same input–
output relationship. Hence, in the following sections, we dis-
cuss how inertial-PN, inertial-PNP and background-PNP
may each be mechanized with reference to the hypothetical
block diagrams in figure 9.
4.4.1. Mechanization of inertial-PN
In order to steer an attack trajectory by implementing inertial-
PN, a hawk would first need to estimate the inertial line-of-
sight rate I _l of its target. In homing missiles, this task is
usually achieved by a gimballed seeker that tracks its target
by aiming to minimize the target’s drift across its sensor
[2]. A sensor called a rate gyro that measures the angular vel-
ocity of the seeker can therefore be used to estimate I _l
directly from the seeker’s motion [21]. Although the details
of the implementation may be somewhat more involved in
the presence of sensor error and tracking delay [3], it follows
that in guided missiles ‘there is no PN without a gyro’ [2]. If a
hawk were to track its target by turning its head like a missile
seeker, then the obvious candidates for sensing I _l would be
the hair cells associated with the semi-circular canals of its
vestibular system.

Some authors have argued that these are only able to
transduce angular acceleration [14,15], which would have to
be integrated to estimate the line-of-sight rate, thereby intro-
ducing drift and an unknown constant of integration.
However, detailed modelling has suggested that the semi-
circular canals may also respond directly to angular velocity
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[13,22,23], which would make them better suited to estimat-
ing the inertial line-of-sight rate. Either way, under this
hypothetical mechanization of inertial-PN, the visual system
would drive the inner tracking loop stabilizing the target’s
position in the head’s coordinate system [24], whereas the
vestibular system would provide the information on the
inertial line-of-sight rate needed to drive the outer guidance
loop (figure 9b). This hypothesis assumes that the eyes
move minimally with respect to the head in flight, as is
likely to be true for raptors [25,26].

Tracking the target continuously with an imaging device
equipped with a gyroscopic sensor is not the only way to



Figure 9. (Opposite.) Block diagrams illustrating alternative ways of mechanizing inertial-PN. (a) Geometry relevant to the block diagrams. The line-of-sight angle,
λ, defined in an inertial frame of reference, is a composite of the body angle (ψ), the neck angle (β), and an error angle (1). The body angle, ψ, is defined as the
angle between the inertial reference direction and the hawk’s longitudinal body axis, whereas the neck angle, β, is defined as the angle between the longitudinal
body axis and the sagittal plane of the head. The error angle, e, is defined as the angle between the head sagittal plane and the target azimuth in retinal
coordinates. Note that the head angle, η, is defined as ψ + β. The inertial line-of-sight rate, I _l, can be reconstructed in different ways. The block diagram
in (b) mechanizes the estimation of I _l by measuring the angular rate of the hawk’s head, _h, as might the semi-circular canals of the bird’s vestibular
system. Here, the visual system drives the inner tracking loop (red dashed line) commanding the neck rate, _b, so as to minimize the error between the
target and some fixed position on the retina. The vestibular system’s estimate of I _l drives the outer guidance loop (blue dashed line) that commands lateral
accelerations to control the body attitude rate, _c, and hawk steering. By contrast, the alternative mechanization of inertial-PN shown in (c) estimates I _l visually
from the retinal drift of the target, which it uses to drive the outer guidance loop. For this to provide an accurate estimate of I _l, the head must be rotationally
stabilized such that _h � 0. In this case, the vestibular system drives the inner stabilization loop (red dashed line) by commanding _b to drive _h to zero. This figure
is adapted from [3]; other ways of mechanizing inertial-PN are possible (see text for details).
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measure a target’s inertial line-of-sight rate. For instance, in
the so-called strapdown missile guidance, the seeker is
fixed to the missile’s body [3] such that the drift of the
target within the seeker’s coordinate system is just the differ-
ence between the inertial line-of-sight rate and the inertial
turn rate of the body. In this case, the inertial line-of-sight
rate can be estimated by comparing the rate at which the
target drifts across the sensor’s coordinate system to the
angular rate of the body. While it is possible that birds use
their lumbosacral organ to measure the angular rate of their
body [27], it seems unlikely that they use strapdown gui-
dance, because birds do not usually hold their heads fixed
with respect to their body (but see [28] for a hypothesis to
the contrary).

Under yet another alternative mechanization of inertial-
PN, a bird could isolate the movement of its head from that
of its body, and keep its head rotationally stabilized even as
the body turns. Under this hypothetical mechanization of
inertial-PN, the vestibular system would only drive the
inner stabilization loop, whereas the retinal drift of the
target would provide the information on line-of-sight rate
needed to drive the outer guidance loop (figure 9c). This
hypothesis again assumes that the eyes move minimally
with respect to the head, but requires periods of stabilized
gaze to be punctuated by fast saccadic head movements, to
avoid the target drifting too far across the retina when the
head is held stable. Distinguishing between these hypotheti-
cal alternative mechanizations of inertial-PN requires
detailed quantitative information on head movements
during prey pursuit, which will be provided elsewhere.

In the meantime, data collected using head-mounted
video cameras suggests the use of both kinds of gaze
strategy in birds. Peregrines and other falcons Falco spp.
have been found to intersperse longer periods of stabilized
gaze with short saccadic head movements during the mid-
phase of a pursuit, but fixate their target at a consistent
location on their retina during its terminal phase [29–31].
Target fixation has also been observed in a northern
goshawk Accipiter gentilis chasing terrestrial prey [29], but
unpublished data from Harris’ hawks [31] suggest that they
lie at neither extreme of the mechanization continuum.
Instead, Harris’ hawks allow their target to drift a short
distance across the retina, before making a fast saccadic
motion to re-fix the retinal coordinates of the target. Compar-
able variation exists in the target tracking behaviours of
different groups of insect. For instance, robber flies (Diptera:
Asilidae) stabilize their head rotationally between saccades,
whereas dragonflies (Odonata) use their head to track their
target [32,33].
4.4.2. Mechanization of inertial-PNP
Implementing inertial-PNP additionally requires measure-
ment of the deviation angle δ between the line-of-sight to
the target and the pursuer’s velocity vector. The latter’s direc-
tion can be estimated directly from the optical flow
experienced during translational motion, provided the back-
ground is close enough for the pursuer’s self-motion to
produce appreciable image motion on the retina. This may
explain why evidence for the use of inertial-PNP has so far
only been forthcoming in hawks chasing terrestrial targets
[11] and not in falcons chasing aerial targets [4], which
instead appear to implement inertial-PN [5]. The direction
of the pursuer’s velocity vector will be most reliably
measured if the head is stabilized rotationally, because then
the singularity representing the centre of expansion of the
optic flow field will coincide with the direction of the velocity
vector, which is not true in general when translational and
rotational self-motion are combined.

Of course, there are other ways in which a pursuer could
estimate the direction of its velocity vector. For example,
feather airflow sensors could be used to align the bird’s
head to the direction of the oncoming air velocity. This will
coincide with the bird’s flight direction under still conditions,
such that the retinal position of its target would then provide
an estimate of the deviation angle δ. An even simpler method
of estimating the deviation angle would be to approximate
the direction of the pursuer’s velocity vector with the direc-
tion of its long body axis, since the two are likely to
coincide quite closely under still conditions. In this case, if
the head were to track the target closely, then the deviation
angle δ would simply be approximated by the neck angle
of the head with respect to the body.
4.4.3. Mechanization of background-PNP
In fact, as we have shown above, measuring the inertial line-
of-sight rate I _l directly need not be necessary if the pursuer
were capable of sensing the background line-of-sight rate B _l
of its target visually. For example, an eagle soaring at great
height, or a falcon engaged in an aerial chase against far-off
hills, could use the distant background as a fixed reference
against which to measure any change in the direction of the
line-of-sight to its target. In this case, the background line-
of-sight rate will approximate the inertial line-of-sight rate.
On the other hand, for a Harris’ hawk flying low over the
ground whilst viewing its terrestrial prey, the nearby visual
background cannot serve as an inertial reference. In this
case, the background line-of-sight rate will not approximate
the inertial line-of-sight rate, but can nevertheless be used
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as feedback to the background-PNP guidance law that we
have defined above.

Background-PNP requires different mechanization to
inertial-PNP, because the background line-of-sight rate B _l is
measured using vision alone. Moreover, measuring B _l does
not even require the head to track the target closely, so the
gaze strategy that the bird can use is flexible. This is because
the optical flow induced by head rotation is the same for the
target and for any background features behind it. It follows
that the target’s motion relative to the background is the
same independent of any head rotation, which makes back-
ground-PNP more robust to flapping perturbations and
variation in active gaze than inertial-PNP. On the other
hand, background-PNP still requires accurate measurement
of the deviation angle δ, which is easiest to measure during
periods in which the head is rotationally stabilized (see above).

There is one significant limitation of background-PNP,
however, which is that for the same physical motion of the
target and its pursuer, the target’s apparent motion relative
to the visual background will vary depending on the distance
between the background and the target. This situation arises
because of the distance-dependence of translational optical
flow, and creates an ambiguity in the meaning of the back-
ground line-of-sight rate. In the context of aerial pursuit of
a terrestrial target, however, the distance between the target
and its local background is likely to remain approximately
constant. Terrestrial pursuit is therefore a best-case scenario
for guiding pursuit using background-PNP, as too is pursuit
against a background that is sufficiently distant that it can
effectively serve as an inertial reference (see above). Either
way, the important point is that background-PNP can be
implemented using visual cues alone, without requiring the
involvement of inertial sensors in the guidance loop.

This conclusion may be especially significant to under-
standing how insects intercept prey, because the best-
known gyroscopic sensors of insects (i.e. the halteres of
flies) are located on the body rather than the head. Further-
more, whilst the antennae of hawkmoths (Lepidoptera:
Sphingidae) have been found to function as rate gyros [34],
this function has not yet been confirmed in any predatory
insect. In any case, given how well background-PNP
models the data, it follows that the use of inertial cues is
not strictly necessary to explain the steering behaviour of
Harris’ hawks pursuing terrestrial targets. This is not to say
that inertial cues will not be important to gaze stabilization,
as inertial cues form the basis of the vestibulo-ocular reflex
that stabilizes the eyes of birds against their head movements
[35]. Rather, we conclude that inertial cues are not necessary
to mechanizing the guidance loop in background-PNP. Even
so, this still begs the question of how visual measurement of
the background line-of-sight rate might be mechanized
physiologically.

The tectofugal system of a bird’s brain contains certain
directionally selective tectal neurons that respond only to
small object motion [36], but whose response is strongly
modulated by any background motion [37,38]. In particular,
their response to small target motion is inhibited by syndirec-
tional background motion and enhanced by contradirectional
background motion [39,40]. These tectal neurons therefore
respond not merely to retinal drift of a target, but rather to
retinal drift of the target relative to its background. In prin-
ciple, their output may therefore encode the background
line-of-sight rate B _l that we have defined.
Tectal neuron responses are best known frompigeons, which
donot engage inpreypursuit, butneuronswith similar responses
have also been found in many predatory insects. These include
small target motion detectors (STMDs) [41,42] which synapse
with target sensitive descending neurons (TSDNs) whose
output commands thoracic muscle activity [43]. The STMD
responses of hover flies (Diptera: Syrphidae) and dragonflies
are unaffected by background motion [41,42], but the TSDN
responses of hover flies and robber flies are strongly affected,
appearing to depend specifically upon the motion of the target
relative to its background [44,45]. Indeed, TSDN response is sup-
pressed completely when the target and the background are
moving at the same apparent velocity [45], and this inhibition
persists evenwhen the region of syndirectional optic flow is con-
fined to the small area of the frontal visual field where tracked
targets are positioned on the retina [44].

Optic-flow sensitive neurons that may be capable of pro-
viding background line-of-sight rate feedback are therefore
present in both birds and insects, although it remains to be
confirmed whether the information that they provide is
used as feedback to their guidance loop or simply as a
means of enhancing the reliability of target detection.
5. Conclusion
To conclude, we find that inertial-PN performs comparably
well to the more sophisticated inertial-PNP and back-
ground-PNP guidance laws that we have used to model
the n = 228 Harris’ hawk attack trajectories reported here.
Inertial-PN therefore provides an effective framework for
modelling the guidance of aerial pursuit behaviour across a
broad phylogenetic range of predatory taxa. Unlike the back-
ground-PNP model, which requires only visual information
to implement guidance, the inertial-PN and inertial-PNP
models require fusion of visual and inertial information.
Visual-only pursuit is also possible under the PP guidance
law, but PP does not model the data as successfully as
inertial-PN. We are left with the conclusion that inertial-PN
provides the most parsimonious model of the data that
entails fusion of visual and inertial information, whereas
background-PNP is the only well-fitting candidate for gui-
dance using visual-only cues. By contrast, inertial-PNP
provides the closest fit to the data overall, albeit that this
difference is only statistically significant when fitting the
model parameters to each flight independently, which
almost certainly results in over-fitting. Testing between the
different ways in which these guidance laws may be mechan-
ized requires detailed quantitative information on head
movements during pursuit, which we will provide elsewhere.
However, of particular relevance to the background-PNP
model, certain target-detecting neurons of insects and birds
are already known to respond to the movement of a target
relative to its background, and are therefore sensitive to the
background line-of-sight rate that would need to be fed
back to command turning under background-PNP.
6. Methods and material
6.1. Experimental protocol
We flew N = 4 captive-bred Harris’ hawks Parabuteo unicinc-
tus in pursuit of an unpredictably moving artificial lure
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indoors. The sample comprised one 7-year-old female, which
had also been included in the previous study of pursuit be-
haviour by Brighton & Taylor [11], plus three first-year
males that had not previously chased a target. We conducted
the flight trials at the John Krebs Field Station, Wytham,
Oxford, UK, in a flight hall with floor dimensions of 20.2 ×
6.1 m, and a minimum ceiling height of 3.8 m. We lit the win-
dowless flight hall using flicker-free LED uplights providing
approximately 1000 lux of diffuse overhead light, mimicking
overcast morning or evening light levels. The floor of the
flight hall was carpeted with artificial grass, and the walls
of the flight hall were hung with camouflage netting to pro-
vide visual contrast. This work was approved by the Animal
Welfare and Ethical Review Board of the Department of Zool-
ogy, University of Oxford, in accordance with University
policy on the use of protected animals for scientific research,
permit no. APA/1/5/ZOO/NASPA, and was considered not
to pose any significant risk of causing pain, suffering,
damage or lasting harm to the animals.

The hawks performed 157 training flights between Janu-
ary and February 2018 and, from February to March 2018,
we flew the same individuals for a total of 330 test flights
of which n = 228 were retained in the final analysis (see
below for details of exclusions). On each trial, the lure was
pulled along an unpredictable, zigzagging course across the
floor by a tow line attached to two parallel Aerotech
ACT140DL linear actuators (Aerotech Limited, Hampshire,
UK), as shown in figure 2a,b. We randomized the lure’s start-
ing position, trajectory and speed (6–8 m s−1) across trials, to
prevent the hawks learning the target’s motion. The tow line
was guided around a system of pulleys, with dummy lines
laid along the alternative routes that were not connected to
the motor, to avoid giving the hawks any information on
what course the lure would follow until it began moving.
The lure was hidden inside a tunnel, out of sight of the
hawk, at the start of each trial. This arrangement was
designed to simulate the evasive behaviour of the lagomorph
prey that Harris’ hawks hunt, which jink sharply from side to
side when evading predators [46].
6.2. Motion capture
We recorded the flight trajectories using 20 motion capture
cameras (Vicon Vantage 16, Vicon Motion Systems Ltd,
Oxford, UK) positioned 3m above floor level around the
walls of the flight hall. The motion capture cameras sampled
the positions of the markers at 200Hz under stroboscopic
850 nm infrared illumination. We calibrated the cameras
using an Active Calibration Wand (Vicon Motion Systems
Ltd, Oxford, UK) that we also used to set the capture
volume origin and ground plane. To record the flight trajec-
tories, we fitted each hawk with two rigid templates, each
holding several 6.4mm spherical retroreflective markers
(figure 2c). We attached one template holding four asymme-
trically arranged markers to the back using a falconry harness
(TrackPack Mounting System, Marshall Radio Telemetry, UT,
USA), and another template holding three symmetrically
arranged markers to the tail using a falconry tail mount (Mar-
shall Aluminium Tail Feather Piece, Marshall Radio
Telemetry Ltd, Cumbria, UK). We also attached 3mm mar-
kers to the head, wings and tail, although we do not
analyse these data here. To record the lure trajectory, we
attached three 6.4mm markers to each long face of the lure.
We also attached markers to the pulley system, and the
tunnel from which the lure started.
6.3. Data processing
We reconstructed each marker’s position with respect to a
coordinate system fixed to the principal axes of the flight
hall, using Vicon Nexus 2.7.6 software (Vicon Motion Sys-
tems Ltd, Oxford, UK). However, as the Vicon software
proved unreliable in labelling the markers between frames
(i.e. identifying the same marker from one frame to the
next), we wrote a custom marker labelling script in Matlab
R2019a (The Mathworks Inc., MA, USA). This script first
pooled those markers that remained within the same
10mm range for at least 60% of the frames and labelled
them as stationary markers; these are markers on the pulley
system and starting tunnels. By a process of exclusion, the
remaining unlabelled markers are therefore either bird or
lure markers. We identified lure markers as any markers fall-
ing within 150mm of the floor plane, and identified the
remaining markers as bird markers. These bird markers
include single markers placed directly on the head, wings
and tail, in addition to the several markers fixed rigidly to
the two templates. We therefore used the pairwise distances
between markers on the two rigid templates to define,
search for and label them. Due to wear or damage, we had
to replace the markers occasionally, and therefore defined
the pairwise distances for each template on a per-day basis.
The pairwise distances between each of the markers in the
same frame were compared against, and matched to, each
template with a tolerance of 5mm in order to label the
backpack and tail mount markers correctly (see also [47]).

To avoid including flights with excessive data dropout
resulting from marker occlusion, we only carried forward
those flights in which the back template markers could be
reconstructed in over 50% of the recorded frames. This left
us with a reduced sample of 274 flights as candidates for
further analysis. We used the centroid of the backpack mar-
kers, tail-mount markers, and lure markers as an initial
estimate of the position of each object. To enable reliable
reconstruction of each centroid, we considered any frames
in which fewer than three markers were detected for either
the template or the lure as missing data. The remaining trajec-
tory data nevertheless contained some misidentified markers,
which we removed from the raw data using a two-step pro-
cess of mean sliding window elimination. In a first step, we
removed any extreme outliers, defined as points falling
more than 500 mm from the centroid trajectories smoothed
using a 0.05 s window. Having removed these extreme out-
liers, we then applied the same method in a second more
conservative pass to eliminate moderate outliers at a distance
threshold of more than 75 mm.

After excluding outliers from the raw data streams for the
bird and lure in this way, we cropped each sequence to begin
at the first frame for which both the bird and lure were vis-
ible. We then used the centroid of the identified backpack
and tail-mount markers to define the position of the bird,
and used the centroid of the identified lure markers to
define the position of the lure. Of the 274 flights remaining
after excluding any with excessive data dropout (see
above), we only analysed those flights in which the hawk suc-
cessfully intercepted the lure, which we determined
according to whether the hawk came within 30mm of the
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lure. Having applied this stringent selection criterion, we
were left with a total of n = 228 flights that we took forward
to the main guidance analysis. We used cubic interpolation
to fill in missing data points and fitted a quintic spline to
smooth the data, using a spline tolerance of 0.03m for the
bird data and 0.01m for the lure data. Finally, we differen-
tiated and evaluated the splines analytically in order to
estimate the velocity and acceleration of the bird and lure at
20 kHz, as required to ensure a reasonably small integration
step size for the forward-Euler method simulations that we
describe in the next section.
l/rsif
J.R.Soc.Interface

20:20230071
6.4. Simulations of guidance behaviour
Because the measured pursuits all occurred just above the
ground plane, we only model the horizontal components of
the trajectory data in our simulations. We simulated the
hawk’s flight trajectory by using each of the different guidance
laws in table 1 to model its predicted turn rate. We used the
hawk’s measured position and velocity to define the initial con-
ditions for the simulation, and forced the hawk’s simulated
flight speed to match its measured flight speed. We used the
measured time-history of the lure’s position and velocity to
compute the target’s deviation angle δ, inertial line-of-sight
rate I _l and background line-of-sight rate B _l, feeding back the
relevant quantities to command turning.

The line-of-sight vector r is defined as

r ¼ r̂T � rP, ð6:1Þ
where r̂T is the measured position of the target and rP is the
simulated position vector of the hawk. We calculate the
scalar deviation angle δ as

d ¼ cos�1 r � vP
jrjjvPj , ð6:2Þ

where vp is the simulated ground velocity of the hawk. For
the purposes of the guidance modelling, the deviation
angle δ is more conveniently represented in vector form as

d ¼
�
cos�1 r � vP

jrjjvPj
��

r � vP
jr � vPj

�
: ð6:3Þ

The angular velocity of the line-of-sight vector r depends
on the frame of reference in which its time derivative is taken.
Specifically, the inertial line-of-sight rate I _l is calculated in
vector form as

I _l ¼ r � (v̂T � vP)

jrj2 , ð6:4Þ

in which v̂T is the measured ground velocity of the target,
whereas the background line-of-sight rate B _l is calculated
in vector form as

B _l ¼ r � v̂T
jrj2 , ð6:5Þ

which we derive in the electronic supplementary material,
Supplementary text.

Each of the five guidance models produces turning at a
rate I _g by commanding a centripetal acceleration a. The
five guidance laws displayed in table 1 produce turning at
a rate I _g by commanding a centripetal acceleration a. In par-
ticular, inertial-PNP commands this acceleration as

aðtÞ ¼ NI _lðt� tÞ � vPðtÞ � Kdðt� tÞ � vPðtÞ, ð6:6Þ
whereas background-PNP commands acceleration as

aðtÞ ¼ NB _lðt� tÞ � vPðtÞ � Kdðt� tÞ � vPðtÞ, ð6:7Þ
in which τ is a fixed sensorimotor time delay. PP guidance is
produced by setting N = 0 in either case, whereas inertial-PN
and background-PN are produced by setting K = 0 in the
equations for inertial-PNP and background-PNP.

We simulated the hawks’ trajectories under each of these
five guidance laws by implementing the preceding continu-
ous time equations in discrete time in Matlab, coupling
them with the following pair of difference equations:

rPnþ1 ¼ rPn þ DtvPn ð6:8Þ
and

vPnþ1 ¼ v̂Pn

vPn þ Dtan
jvPn þ Dtanj , ð6:9Þ

in which v̂P is the hawk’s measured ground speed, and where
the subscript notation indicates the values of the variables at
successive time steps such that tn+1 = tn + Δt.
6.5. Model fitting
We optimized the parameter values of each guidance model
by simulating each hawk trajectory independently under
different values of the time delay τ. We varied τ on the
interval 0≤ τ≤ τmax, where τmax = 0.15 s, at increments corre-
sponding to the 0.005 s sampling period of the Vicon
system. Taking time t = 0 as the point at which the lure
began moving, we simulated the bird’s flight trajectory
from t = τmax to the point of intercept as defined above. This
was done to ensure that we always simulated the same sec-
tion of data for each flight. At each value of τ, we used a
Nelder–Mead simplex algorithm to find the values of N
and/or K that minimized the root mean square (RMS) error
e between the simulated (rp) and measured (r̂ p) positions of
the bird,

e ¼ 1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
n¼1

ðr pn � r̂ pnÞ � ðr pn � r̂ pnÞ
vuut : ð6:10Þ

Using this approach, we found the best-fitting values of the
parameters τ, N and/or K for each flight and for each gui-
dance law independently, together with the associated
value of the RMS error e.

In the Results, we report the medians of these parameters
over all the flights as ~N, ~K and ~t, together with the corre-
sponding median RMS error ~e. We also fitted the inertial-
PNP and background-PNP guidance laws globally across
all of the flights, noting that these models both contain PP
as a special case when N = 0, and each contain inertial-PN
and background-PN as special cases when K = 0. Specifically,
we found the unique combination of N, K and τ that mini-
mized the median RMS error ~e by varying N on the
interval [0, 1.5] at 0.1 increments, K on the interval [0, 5] s−1

at 0.2 s−1 increments, and τ on the interval [0, 0.15] s at
0.005 s increments. In the Results, we report the globally opti-
mal values of these parameters over all the flights as �N, �K and
�t, together with the corresponding median RMS error ~e. It is
important to note that our minimization of the RMS error (i.e.
L2-norm) here differs from our minimization of the mean
absolute error (i.e. L1-norm) in a complementary analysis of
these data in the context of obstructed pursuit. [19]. The L2-
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norm penalizes larger deviations to a greater extent than
smaller deviations, so the use of the L1-norm was more
robust to perturbations to the pursuit trajectories caused by
the presence of obstacles in the latter study.

6.6. Guidance model comparison
We computed bootstrapped 95% confidence intervals (CIs)
for the median best-fitting parameter estimates ~N, ~K, ~t and
~e, using the bias-corrected and accelerated percentile
method over 106 iterations in Matlab. In other words, begin-
ning from the original sample of n = 228 flights, we re-
sampled with replacement those flights that contributed to
the calculation of the median values of the parameters. We
also calculated bootstrapped 95% CIs for the globally optimal
parameter estimates �N, �K and �t, together with the corre-
sponding median RMS error ~e. In this case, we used the
same bias-corrected and accelerated percentile method, but
over 103 iterations. In other words, beginning from the orig-
inal sample of n = 228 flights, we re-sampled with
replacement those flights that contributed to the identifi-
cation of the model parameters at which the median RMS
error ~e was minimized.

Finally, to assess the predictive power of different
guidance models, we performed a k-fold cross-validation
analysis on the inertial-PN, inertial-PNP and background-
PNP models. Specifically, we first split the n = 228 flight
trials into k = 12 data subsets, each containing 19 flights. We
then applied the global fitting technique to k− 1 = 11 of the
subsets, finding the optimal parameters as those that mini-
mize ~e. The predictive power of the model parameters is
then the ~e calculated on the remaining single subset. We
applied this process 12 times, excluding a different subset
each time, and we reported the predictive power of the differ-
ent models as the mean of the median RMS error (~e) over all
k = 12 validation subsets given each guidance model.
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