9 research outputs found

    Ecology good, aut-ecology better; Improving the sustainability of designed plantings

    Get PDF
    © 2015 European Council of Landscape Architecture Schools (ECLAS). This paper explores how contemporary ecological science, and aut-ecology in particular, can improve the sustainability of designed vegetation. It is proposed that ecological understanding can be applied to design at three levels: 1) as representation, 2) as process, and 3) as aut-ecology, representing a gradient from the least to the most profound. Key ecological interactions that determine the success of designed plantings are explored via a review of relevant ecological research, challenging some widely held but unhelpful constructs about how both semi-natural and designed vegetation actually function. The paper concludes that there are real benefits to integrating aut-ecological understanding in the design of vegetation at all scales but that this will require ecological theory to be taught as a design toolkit rather than largely as descriptive knowledge

    How fast can conifers climb mountains? Investigating the effects of a changing climate on the viability of Juniperus seravschanica within the mountains of Oman, and developing a conservation strategy for this tree species

    Get PDF
    The conifer, Juniperus seravschanica is a keystone species within Oman, yet its decline is typical of other arid-adapted, montane tree species. This research aimed to identify causes of decline and subsequent viable conservation strategies; strategies that may have wider application for tree conservation. Decline in J. seravschanica is typified by foliar dieback and little regeneration via seed; traits most apparent at lower altitudes. The research evaluated the viability of seeds collected at three different altitudes: 2100-2220 m (Low), 2300-2400 m (Mid) and 2500-2570 m above sea level (High). In addition, seeds and young trees were planted at these altitudes and maintained under differential irrigation. Results showed that trees grown at Low altitude produced fewer, less-viable seed. Transplanting young trees proved more successful than seed sowing in re-establishing plants in the wild. Age of transplant had an effect, however, with 5-year-old stock showing greater survival ( > 97%) than 2-year-old trees. The younger trees only established well when planted at High altitude, or provided with irrigation at Mid/Low altitudes. Water availability did not entirely explain survival, and in some locations direct heat stress too may be limiting viability. Practical conservation measures include identifying genotypes with greater drought/heat tolerances and planting only more mature nursery trees

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Conservation status of the world's skinks (Scincidae): taxonomic and geographic patterns in extinction risk

    No full text
    Our knowledge of the conservation status of reptiles, the most diverse class of terrestrial vertebrates, has improved dramatically over the past decade, but still lags behind that of the other tetrapod groups. Here, we conduct the first comprehensive evaluation (~92% of the world's ~1714 described species) of the conservation status of skinks (Scincidae), a speciose reptile family with a worldwide distribution. Using International Union for Conservation of Nature (IUCN) criteria, we report that ~20% of species are threatened with extinction, and nine species are Extinct or Extinct in the Wild. The highest levels of threat are evident in Madagascar and the Neotropics, and in the subfamilies Mabuyinae, Eugongylinae and Scincinae. The vast majority of threatened skink species were listed based primarily on their small geographic ranges (Criterion B, 83%; Criterion D2, 13%). Although the population trend of 42% of species was stable, 14% have declining populations. The key threats to skinks are habitat loss due to agriculture, invasive species, and biological resource use (e.g., hunting, timber harvesting). The distributions of 61% of species do not overlap with protected areas. Despite our improved knowledge of the conservation status of the world's skinks, 8% of species remain to be assessed, and 14% are listed as Data Deficient. The conservation status of almost a quarter of the world's skink species thus remains unknown. We use our updated knowledge of the conservation status of the group to develop and outline the priorities for the conservation assessment and management of the world's skink species

    The conservation status of the world’s reptiles

    Get PDF
    Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles
    corecore