24 research outputs found

    Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation

    Get PDF
    Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca(2+)-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuroinflammatory (so-called M1/M2 polarization). ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induces receptor-operated Ca(2+) entry (ROCE). Although store-operated Ca(2+) entry (SOCE) was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca(2+) imaging. After depleting internal Ca(2+) stores, SOCE was clearly detectable. High ATP concentrations (1 mM) elicited sustained increases in intracellular [Ca(2+)]i whereas lower concentrations (≤100 μM) also induced Ca(2+) oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca(2+) oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca(2+) signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120) were tested on their profile to act on Ca(2+) oscillations (P2X4) and sustained [Ca(2+)]i increases. We demonstrate specific drug effects on purinergic Ca(2+) pathways and provide new pharmacological insights into Ca(2+) oscillations in BV2 cells. For example, minocycline inhibits both P2X7- and P2X4-mediated Ca(2+)-responses, and this may explain its anti-inflammatory action in neuroinflammatory disease. As a technical result, our novel automated bio-screening approach provides a biomedical engineering platform to allow high-content drug library screens to study neuro-inflammation in vitro

    Deep and Frequent Phenotyping study protocol: an observational study in prodromal Alzheimer's disease.

    Get PDF
    INTRODUCTION: Recent failures of potential novel therapeutics for Alzheimer's disease (AD) have prompted a drive towards clinical studies in prodromal or preclinical states. However, carrying out clinical trials in early disease stages is extremely challenging-a key reason being the unfeasibility of using classical outcome measures of dementia trials (eg, conversion to dementia) and the lack of validated surrogate measures so early in the disease process. The Deep and Frequent Phenotyping (DFP) study aims to resolve this issue by identifying a set of markers acting as indicators of disease progression in the prodromal phase of disease that could be used as indicative outcome measures in proof-of-concept trials. METHODS AND ANALYSIS: The DFP study is a repeated measures observational study where participants will be recruited through existing parent cohorts, research interested lists/databases, advertisements and memory clinics. Repeated measures of both established (cognition, positron emission tomography (PET) imaging or cerebrospinal fluid (CSF) markers of pathology, structural MRI markers of neurodegeneration) and experimental modalities (functional MRI, magnetoencephalography and/or electroencephalography, gait measurement, ophthalmological and continuous smartphone-based cognitive and other assessments together with experimental CSF, blood, tear and saliva biomarkers) will be performed. We will be recruiting male and female participants aged >60 years with prodromal AD, defined as absence of dementia but with evidence of cognitive impairment together with AD pathology as assessed using PET imaging or CSF biomarkers. Control participants without evidence of AD pathology will be included at a 1:4 ratio. ETHICS AND DISSEMINATION: The study gained favourable ethical opinion from the South Central-Oxford B NHS Research Ethics Committee (REC reference 17/SC/0315; approved on 18 August 2017; amendment 13 February 2018). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.NIH

    Purinergic modulation of microglial cell activation

    Get PDF
    Microglial cells are resident macrophages in the brain and their activation is an important part of the brain immune response and the pathology of the major CNS diseases. Microglial activation is triggered by pathological signals and is characterized by morphological changes, proliferation, phagocytosis and the secretion of various cytokines and inflammatory mediators, which could be both destructive and protective for the nervous tissue. Purines are one of the most important mediators which regulate different aspects of microglial function. They could be released to the extracellular space from neurons, astrocytes and from the microglia itself, upon physiological neuronal activity and in response to pathological stimuli and cellular damage. Microglial activation is regulated by various subtypes of nucleotide (P2X, P2Y) and adenosine (A1, A2A and A3) receptors, which control ionic conductances, membrane potential, gene transcription, the production of inflammatory mediators and cell survival. Among them, the role of P2X7 receptors is especially well delineated, but P2X4, various P2Y, A1, A2A and A3 receptors also powerfully participate in the microglial response. The pathological role of microglial purine receptors has also been demonstrated in disease models; e.g., in ischemia, sclerosis multiplex and neuropathic pain. Due to their upregulation and selective activation under pathological conditions, they provide new avenues in the treatment of neurodegenerative and neuroinflammatory illnesses

    The Dementias Platform UK (DPUK) Data Portal

    Get PDF
    Abstract: The Dementias Platform UK Data Portal is a data repository facilitating access to data for 3 370 929 individuals in 42 cohorts. The Data Portal is an end-to-end data management solution providing a secure, fully auditable, remote access environment for the analysis of cohort data. All projects utilising the data are by default collaborations with the cohort research teams generating the data. The Data Portal uses UK Secure eResearch Platform infrastructure to provide three core utilities: data discovery, access, and analysis. These are delivered using a 7 layered architecture comprising: data ingestion, data curation, platform interoperability, data discovery, access brokerage, data analysis and knowledge preservation. Automated, streamlined, and standardised procedures reduce the administrative burden for all stakeholders, particularly for requests involving multiple independent datasets, where a single request may be forwarded to multiple data controllers. Researchers are provided with their own secure ‘lab’ using VMware which is accessed using two factor authentication. Over the last 2 years, 160 project proposals involving 579 individual cohort data access requests were received. These were received from 268 applicants spanning 72 institutions (56 academic, 13 commercial, 3 government) in 16 countries with 84 requests involving multiple cohorts. Projects are varied including multi-modal, machine learning, and Mendelian randomisation analyses. Data access is usually free at point of use although a small number of cohorts require a data access fee

    Sensitization of colonic nociceptors by TNFα is dependent on TNFR1 expression and p38 MAPK activity.

    No full text
    Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease

    Neurons derived from individual early Alzheimer's disease patients reflect their clinical vulnerability.

    Get PDF
    Establishing preclinical models of Alzheimer's disease that predict clinical outcomes remains a critically important, yet to date not fully realized, goal. Models derived from human cells offer considerable advantages over non-human models, including the potential to reflect some of the inter-individual differences that are apparent in patients. Here we report an approach using induced pluripotent stem cell-derived cortical neurons from people with early symptomatic Alzheimer's disease where we sought a match between individual disease characteristics in the cells with analogous characteristics in the people from whom they were derived. We show that the response to amyloid-β burden in life, as measured by cognitive decline and brain activity levels, varies between individuals and this vulnerability rating correlates with the individual cellular vulnerability to extrinsic amyloid-β in vitro as measured by synapse loss and function. Our findings indicate that patient-induced pluripotent stem cell-derived cortical neurons not only present key aspects of Alzheimer's disease pathology but also reflect key aspects of the clinical phenotypes of the same patients. Cellular models that reflect an individual's in-life clinical vulnerability thus represent a tractable method of Alzheimer's disease modelling using clinical data in combination with cellular phenotypes

    A novel role for P2X7 receptor signalling in the survival of mouse embryonic stem cells☆☆☆

    Get PDF
    The growth of a pluripotent embryonic stem (ES) cell population is dependent on cell survival, proliferation and self-renewal. The nucleotide ATP represents an important extracellular signalling molecule that regulates the survival of differentiated cells, however, its role is largely undefined in embryonic stem cells. Here we report a role for ATP-gated P2X7 receptors in ES cell survival. The functional expression of P2X7 receptors in undifferentiated mouse ES cells is demonstrated using a selective P2X7 antagonist and small interfering RNA knockdown of these receptors. Our data illustrate a key role for the P2X7 receptor as an essential pro-survival signal required for optimal ES cell colony growth in the presence of leukemia inhibitor factor (LIF). However, chronic exposure to exogenous ATP leads to rapid P2X7-dependent cell death via necrosis. Together, these data demonstrate a novel role for P2X7 receptors in regulation of ES cell behaviour where they can mediate either a pro-survival or pro-death signal depending on the mode of activation
    corecore