20 research outputs found

    The TRANSFORM DSE – an interactive decision support environment for serving smart city strategy development and local measure implementation

    Get PDF
    The contribution deals with the decision support tool developed within the EU FP7 TRANSFORM project, a collaboration of varoiuous partners including 6 cities (Amsterdam, Copenhagen, Genova, Hamburg, Lyon and Vienna) aiming to achieve a significant progress in the transformation towards Smart Cities. The project rests on three main pillars: the development of a Transformation Agenda, designing a Decision Support Environment (DSE) and developing local measure implementation plans. The DSE is carried out by the AIT – Austrian Institute of Technology GmbH and Accenture B.V. supported by Macomi B.V. as sub-contractor of Accenture. The TRANSFORM DSE tool addresses several features: an “easy to use” interactive scenario development- and result mapping, allowing selection, virtual allocation of measures and finally assessing the local and city-wide effects of the measures regarding impacts on urban environment – due to energy use and greenhouse gas emissions, and on the economy – through implementation costs and effects on the cities’ employment and income. The paper gives an introduction on the topic, describes the process to gather user requirements, decribes the tool design regarding data base, graphical user interface and measure editor and depicts some results through screen shots. Conclusoins will be made rearding the user requirement gathering process, the tool functiality requirments and an outlook discusses steps to improve the toll and extend the functionality

    The Enigmatic Esx Proteins:Looking Beyond Mycobacteria

    Get PDF
    Bacteria export proteins across membranes using a range of transport machineries. Type VII secretion systems (T7SSs), originally described in mycobacteria, are now known to be widespread across diverse bacterial phyla. Recent studies have characterized secretion components and mechanisms of type VII secretion in pathogenic and environmental bacteria. A variety of functions have been attributed to T7SS substrates, including interactions with eukaryotes and with other bacteria. Here, we evaluate the growing body of knowledge on T7SSs, with focus on the nonmycobacterial systems, reviewing their phylogenetic distribution, structure and function in diverse settings

    Entrée de bactériophage SPP1 dans la cellule hôte

    No full text
    The four main steps of bacterial viruses (bacteriophages) lytic infection are (i) specific recognition and genome entry into the host bacterium, (ii) replication of the viral genome, (iii) assembly of viral particles, and (iv) their release, leading in most cases to cell lysis. Although the course of individual steps of the viral infection cycle has been relatively well established, the details of how viral DNA transits from the virion to the host cytoplasm and of how the cellular environment catalyzes and possibly organizes the entire process remain poorly understood.Tailed bacteriophages are by far the most abundant viruses that infect Eubacteria. The first event in their infection is recognition of a receptor on the surface of host bacterium by the phage adsorption machinery. The barriers that the infectious particle overcomes subsequently are the cell wall and the cytoplasmic membrane of bacteria. This implies a localized degradation of the wall and the flow of its double stranded DNA (dsDNA) through a hydrophilic pore in the membrane. The lineards DNA molecule is most frequently circularized in the cytoplasm followed by its replication. In this study we used bacteriophage SPP1 that infects the Gram-positive bacterium Bacillus subtilis as a model system to dissect the different steps leading to transfer of the phage genome from the viral capsid to the host cell cytoplasm.normally to B. subtilis but do not trigger depolarization of the CM. Attachment of intact SPP1 particles is thus required for phage-induced depolarization.The beginning of B. subtilis infection by bacteriophage SPP1 was followed inspace and time. The position of SPP1 binding at the cell surface was imaged by fluorescence microscopy using virus particles labeled with "quantum dots". We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB,which is encoded by a putative type VII secretion system gene cluster.Immunostaining and YueB – GFP fusion showed that the phage receptor protein YueB is found over the entire cell surface. It concentrates at the bacterial poles too,and displays a punctate distribution over the sidewalls. The dynamics of SPP1 DNA entry and replication was visualised in real time by assaying specific binding of a fluorescent protein to tandem sequences present in the SPP1 genome. During infection, most of the infecting phages DNA entered and replicated near the bacterial poles in a defined focus. Therefore, SPP1 assembles a replication factory at a specific location in the host cell cytoplasm. DNA delivery to the cytoplasm depends on millimolar concentrations of Ca2+ allowing uncoupling it from the precedent steps of SPP1 adsorption to the cell envelope and CM depolarization that require only micromolar amounts of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented.Les quatre étapes principales d'infection des bactéries par leurs virus sont (i) la reconnaissance spécifique de la cellule hôte et l'entrée du génome dans le cytoplasme,(ii) la réplication du génome viral, (iii) l'assemblage des particules virales, et (iv) leur relâchement, menant dans la plupart des cas à la lyse de la cellule. Bien que la description des étapes individuelles du cycle viral a été relativement bien établie, les détails de comment d'ADN viral chemine du virion jusqu’au cytoplasme de la bactérie hôte et de comment l'environnement cellulaire participe au processus restent mal compris.La première étape de l’infection est la reconnaissance d’un récepteur à la surface de la bactérie hôte par la machinerie d’adsorption du phage. Les barrières que l’agent infectieux doit franchir par la suite sont la membrane externe de la bactérie Gram-negative, la paroi cellulaire et la membrane cytoplasmique. Ceci implique une dégradation localisée de la paroi et le cheminement de l’ADN à travers un pore dans la membrane. L‘ADN linéaire se circularise normalement dans le cytoplasme et il est répliqué par la suite. On a utilisé le bactériophage SPP1 qui infecte la bactérie Gram-positive Bacillus subtilis comme modèle d’étude pour disséquer ces différentes étapes clés pour le démarrage de l’infection virale. Dans ce travail de thèse les conditions d’infection et d’acquisition de données pour suivre en temps réel la dépolarisation de la membrane cellulaire de B. subtilis lors de l’infection par SPP1 ont été mis au point. Il est montré que le démarrage de l’infection déclenche une dépolarisation très rapide de la membrane cytoplasmique.Le potentiel de membrane n’est plus rétablit pendant toute la durée du cycle d'infection. Ce changement du potentiel de membrane au début de l’infection dépend de la présence du récepteur YueB. L’amplitude de la dépolarisation dépend du nombre de particules virales infectieuses présentes et de la concentration du récepteur YueB à la surface de la bactérie hôte. L’interaction du phage avec le récepteur YueB conduit à l’interaction irréversible et à l'éjection de l’ADN de SPP1. Pour établir si c’est l’interaction avec YueB ou le début de l’entrée de l’ADN qui conduit à la dépolarisation de la membrane on a utilisé des phages SPP1 éclates par EDTA qui adsorbent normalement à B. subtilis mais qui n’avaient plus leur ADN. Les résultats obtenus ont montré que la dépolarisation requiert l’interaction du virus intacte avec le récepteur YueB. Des concentrations sous-millimolaire de Ca2+ sont nécessaires et suffisantes pour SPP1 liaison réversible à l'enveloppe d'hôte et donc de déclencher la dépolarisation.La cinétique d’entrée de l’ADN du bactériophage SPP1 dans la bactérie Bacillus subtilis a été suivie en temps réel par microscopie de fluorescence. On a mis au point une méthode de microscopie pour visualiser des particules virales marquées avec des «quantum dots» ce qui permit de démontrer que ces particules se fixent préférentiellement aux pôles des bacilli. L’immuno-marquage du récepteur de SPP1,la protéine YueB, a montré que celle-ci a une organisation ponctuée à la surface de B.subtilis et se concentre particulièrement aux extrémités de la bactérie. Cette localisation particulière du phage sur la surface de la cellule hôte corrèle avec l’observation que l’ADN viral rentre dans le cytoplasme (<2 min) et se réplique dans des foci situés dans la plupart des cas à proximité des pôles de B. subtilis. L’étude spatio-temporelle de l’interaction de SPP1 avec son hôte Gram-positive montre que le virus cible des régions spécifiques de la bactérie pour son entrée et pour sa réplication. Transfert d'ADN dans le cytoplasme dépend des concentrations millimolaires de Ca2+. Un modèle décrivant les événements précoces de l'infection bactériophage SPP1 est présenté

    A Low Carbon City Action Plan for one of China’s Low Carbon Pilot Cities

    No full text
    In Chinese cities urbanization, industrialization and a changing life style of the population are driving growing energy consumption in buildings, industries and transportation and an increase in CO2 emissions. Facing these challenges, the National Development and Reform Commission has recognised an urgent need for transformation and designated 8 Cities and 5 Provinces in China to pioneer the planning and implementation of concrete low carbon measures, aiming to decrease the CO2 intensity of the economic development, to increase the energy efficiency of urban systems and to improve the quality of life in growing urban regions. In this context, a Sino-Austrian cooperation has been initiated between the Development and Reform Commission of Nanchang, one of the 8 selected Low Carbon Pilot Cities, and the Austrian Institute of Technology to develop a comprehensive set of Low Carbon City Measures and a Low Carbon City Action Plan, proposing specific technological and non-technological measures and concrete actions, capable of introducing important impulses targeting the increase of energy efficiency and the reduction of CO2 emissions in Nanchang. A team of experts has developed an integrated Low Carbon City Action Plan, including sectors such as buildings, energy supply and consumption, industries, transportation, agriculture and urban planning

    Entrée de bactériophage SPP1 dans la cellule hôte

    No full text
    Les quatre étapes principales d'infection des bactéries par leurs virus sont (i) la reconnaissance spécifique de la cellule hôte et l'entrée du génome dans le cytoplasme,(ii) la réplication du génome viral, (iii) l'assemblage des particules virales, et (iv) leur relâchement, menant dans la plupart des cas à la lyse de la cellule. Bien que la description des étapes individuelles du cycle viral a été relativement bien établie, les détails de comment d'ADN viral chemine du virion jusqu au cytoplasme de la bactérie hôte et de comment l'environnement cellulaire participe au processus restent mal compris.La première étape de l infection est la reconnaissance d un récepteur à la surface de la bactérie hôte par la machinerie d adsorption du phage. Les barrières que l agent infectieux doit franchir par la suite sont la membrane externe de la bactérie Gram-negative, la paroi cellulaire et la membrane cytoplasmique. Ceci implique une dégradation localisée de la paroi et le cheminement de l ADN à travers un pore dans la membrane. L ADN linéaire se circularise normalement dans le cytoplasme et il est répliqué par la suite. On a utilisé le bactériophage SPP1 qui infecte la bactérie Gram-positive Bacillus subtilis comme modèle d étude pour disséquer ces différentes étapes clés pour le démarrage de l infection virale. Dans ce travail de thèse les conditions d infection et d acquisition de données pour suivre en temps réel la dépolarisation de la membrane cellulaire de B. subtilis lors de l infection par SPP1 ont été mis au point. Il est montré que le démarrage de l infection déclenche une dépolarisation très rapide de la membrane cytoplasmique.Le potentiel de membrane n est plus rétablit pendant toute la durée du cycle d'infection. Ce changement du potentiel de membrane au début de l infection dépend de la présence du récepteur YueB. L amplitude de la dépolarisation dépend du nombre de particules virales infectieuses présentes et de la concentration du récepteur YueB à la surface de la bactérie hôte. L interaction du phage avec le récepteur YueB conduit à l interaction irréversible et à l'éjection de l ADN de SPP1. Pour établir si c est l interaction avec YueB ou le début de l entrée de l ADN qui conduit à la dépolarisation de la membrane on a utilisé des phages SPP1 éclates par EDTA qui adsorbent normalement à B. subtilis mais qui n avaient plus leur ADN. Les résultats obtenus ont montré que la dépolarisation requiert l interaction du virus intacte avec le récepteur YueB. Des concentrations sous-millimolaire de Ca2+ sont nécessaires et suffisantes pour SPP1 liaison réversible à l'enveloppe d'hôte et donc de déclencher la dépolarisation.La cinétique d entrée de l ADN du bactériophage SPP1 dans la bactérie Bacillus subtilis a été suivie en temps réel par microscopie de fluorescence. On a mis au point une méthode de microscopie pour visualiser des particules virales marquées avec des quantum dots ce qui permit de démontrer que ces particules se fixent préférentiellement aux pôles des bacilli. L immuno-marquage du récepteur de SPP1,la protéine YueB, a montré que celle-ci a une organisation ponctuée à la surface de B.subtilis et se concentre particulièrement aux extrémités de la bactérie. Cette localisation particulière du phage sur la surface de la cellule hôte corrèle avec l observation que l ADN viral rentre dans le cytoplasme (<2 min) et se réplique dans des foci situés dans la plupart des cas à proximité des pôles de B. subtilis. L étude spatio-temporelle de l interaction de SPP1 avec son hôte Gram-positive montre que le virus cible des régions spécifiques de la bactérie pour son entrée et pour sa réplication. Transfert d'ADN dans le cytoplasme dépend des concentrations millimolaires de Ca2+. Un modèle décrivant les événements précoces de l'infection bactériophage SPP1 est présenté.The four main steps of bacterial viruses (bacteriophages) lytic infection are (i) specific recognition and genome entry into the host bacterium, (ii) replication of the viral genome, (iii) assembly of viral particles, and (iv) their release, leading in most cases to cell lysis. Although the course of individual steps of the viral infection cycle has been relatively well established, the details of how viral DNA transits from the virion to the host cytoplasm and of how the cellular environment catalyzes and possibly organizes the entire process remain poorly understood.Tailed bacteriophages are by far the most abundant viruses that infect Eubacteria. The first event in their infection is recognition of a receptor on the surface of host bacterium by the phage adsorption machinery. The barriers that the infectious particle overcomes subsequently are the cell wall and the cytoplasmic membrane of bacteria. This implies a localized degradation of the wall and the flow of its double stranded DNA (dsDNA) through a hydrophilic pore in the membrane. The lineards DNA molecule is most frequently circularized in the cytoplasm followed by its replication. In this study we used bacteriophage SPP1 that infects the Gram-positive bacterium Bacillus subtilis as a model system to dissect the different steps leading to transfer of the phage genome from the viral capsid to the host cell cytoplasm.normally to B. subtilis but do not trigger depolarization of the CM. Attachment of intact SPP1 particles is thus required for phage-induced depolarization.The beginning of B. subtilis infection by bacteriophage SPP1 was followed inspace and time. The position of SPP1 binding at the cell surface was imaged by fluorescence microscopy using virus particles labeled with "quantum dots". We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB,which is encoded by a putative type VII secretion system gene cluster.Immunostaining and YueB GFP fusion showed that the phage receptor protein YueB is found over the entire cell surface. It concentrates at the bacterial poles too,and displays a punctate distribution over the sidewalls. The dynamics of SPP1 DNA entry and replication was visualised in real time by assaying specific binding of a fluorescent protein to tandem sequences present in the SPP1 genome. During infection, most of the infecting phages DNA entered and replicated near the bacterial poles in a defined focus. Therefore, SPP1 assembles a replication factory at a specific location in the host cell cytoplasm. DNA delivery to the cytoplasm depends on millimolar concentrations of Ca2+ allowing uncoupling it from the precedent steps of SPP1 adsorption to the cell envelope and CM depolarization that require only micromolar amounts of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Contribution to the knowledge development for smart cities

    No full text
    The complexity inherent to cities and urban systems is the core challenge in the attempts to measure their “smartness”. Numerous debates about Smart Cities reveal opinions split among scientific groups, stakeholders and urban actors, all competing for the Smart City idea. The debate about the direction towards which cities should develop is as persistent as the magnitude of the impact that the on-going, worldwide urbanisation has on the environment and quality of life. Despite the different viewpoints regarding components defining a Smart City, there seems to be consensus on the need for urgent transformation beyond a simple reproduction of state-of-the-art. To achieve this transformation, an in-depth understanding of the existing and potential interactions between the urban energy systems and their context is required for effective solutions containing the prospect of fitting the complex nature of urban environments. “Making” a Smart City is an attempt to embed new concepts, processes, and technologies coupling specific knowledge with specific actions in the first place. However, it also raises difficult questions. Taking a wider urban context as an argumentative background, this article navigates between the inconsistencies in definitions of Smart City and development concepts in search for answers and approaches that would be capable to disentangle the complex and interlinked urban networks, systems, and respective forces in play. The article highlights the ambiguous relationship between the individually framed technological development and its urban context, exposed by specific Austrian examples that provide an insight into concrete challenges, barriers and solutions. Finally, the article proposes to explore the Smart City as a relational system between concepts, technologies and processes that reflect on the importance of knowledge exchange in a multi-layered urban set-up

    Temporal compartmentalization of viral infection in bacterial cells

    Get PDF
    International audienceVirus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral–bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication

    Feasibility Study On Transport Enterprises' Quality Improvement

    No full text
    Striving for competitive advantage Transport Enterprises are obliged to determine and improve its performance quality. The article analyzes the concepts of Quality Management and processes, the main methods of Quality improvement and its applications in Transport Enterprises. The content analysis of Transport Enterprises‘ web pages made it possible to identify the most popular Quality Management Systems applied and other means of Quality assurance. The article provides an analysis of Transport En- terprises‘ Quality Improvement possibilities and a tool designed for performance improvement and evalu- ation on the basis of EFQM model. The provided tool undergone approbation in Transport Enterprise by the means of several iterations, which provides prerequisites for determination of usability and applicabil- ity of designed method in Transport sector

    Agency Law In Business Relationships: The Main Characteristics From A Comparative Perspective

    No full text
    This article tries to comparatively analyse theoretical and practical problems of agency law in terms of business relationships. In order to reach this goal the major issues of agency law are analyzed in this work, such as legal effect of agency, grant of authority, mandate contracts, unauthorized agency, liability imposed on the principal for wrongs committed by the agent and other important and problematic aspects in this field. When analysing every one of them, most of the emphasis is put on the ways allowing to ensure the balance of rights and legal interests of participants in business relations of agency
    corecore