239 research outputs found

    Using the edTPA as a Model for Teacher Research and Reflective Practice: An Honors Thesis

    Get PDF
    Teacher research engages educators in inquiry to enhance their practice, initiate evidence-based change in their classroom and become more reflective practitioners in order to best support the learning of their students’ individual strengths and needs. The edTPA is a national teaching performance assessment that determines teachers’ effective practices as they are on the cusp of entering the educational profession. Aspiring teachers must demonstrate that they are prepared to enter the educational profession with the skills and knowledge needed to help each of their individual students learn. The edTPA was completed and submitted during the high school student teaching clinical experience, then scored by national Pearson edTPA Mathematics Content scorers based on fifteen subject-specific rubrics. The submission score was reviewed and analyzed through the perspective of the next generation of aspiring teachers who will complete the edTPA and by cross-referencing curriculum in the Butler University teaching preparation program. What was found was that students in the middle/secondary education program are prepared to engage in the cycle of planning, instructing and assessing student work in order to use data to make teaching decisions for student-centered instruction over the course of their four years. The active participation in teacher research such as the edTPA develops and strengthens aspiring or novice teachers’ work towards becoming a reflective practitioner. New teachers continue to become purposeful educators by supporting their students’ strengths and needs in lessons, engaging students in meaningful learning experiences, analyzing student progress or growth, and modifying future instruction to provide more effective instruction

    Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods

    Get PDF
    Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical representation of the system including accurate values of the model parameters. Fortunately, modern experimental techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous compromise among range of applicability, computational complexity and information provided

    A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila.

    Get PDF
    Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.MINECO BFU2009-10184/BFU2012-33775/SEV-2012-0208 European Commission FP7/KBBE-2011/5/289434 La Caixa Savings Bank (PhD fellowship to BV) KLI Klosterneuburg (PhD Writing-up & Postdoctoral Fellowships to BV) Wissenschaftskolleg zu Berlin (Wiko) (Fellowships to JJ and AC

    The Rainbow Cohort: saquinavir/r is effective and well tolerated in antiretroviral therapy (ART)-naïve patients – 48-week results from Germany

    Get PDF
    Poster presentation: Purpose of the study The aim of the Rainbow Cohort is to assess the tolerability and efficacy of initiating treatment with, or switching treatment to saquinavir (SQV) 500 mg film-coated tablet formulation. We present the final 48-week subgroup analysis of antiretroviral therapy (ART)-naïve patients. ..

    SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance

    Get PDF
    Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens. Cytokinin and auxin are two major hormonal regulators of plant growth. Here the authors identify SYAC1, a gene that is synergistically activated by the two hormones being applied together, and show that it is required for normal growth while negatively impacting pathogen resistance

    TPX2-LIKE PROTEIN 3 is the primary activator of α-Aurora kinases and is essential for embryogenesis

    Get PDF
    Aurora kinases are key regulators of mitosis. Multicellular eukaryotes generally possess two functionally-diverged types of Aurora kinases. In plants, including Arabidopsis thaliana, these are termed α and β Auroras. As the functional specification of Aurora kinases is determined by their specific interaction partners, we initiated interactomics analyses using both Arabidopsis α Aurora kinases (AUR1 and AUR2). Proteomics results revealed that TPX2-LIKE PROTEINS 2 and 3 (TPXL2/3) prominently associated with α Auroras, as did the conserved TPX2 to a lower degree. Like TPX2, TPXL2 and TPXL3 strongly activated the AUR1 kinase but exhibited cell cycle-dependent localization differences on microtubule arrays. The separate functions of TPX2 and TPXL2/3 were also suggested by their different influences on AUR1 localization upon ectopic expressions. Furthermore, genetic analyses showed that TPXL3, but not TPX2 and TPXL2, acts non-redundantly to enable proper embryo development. In contrast to vertebrates, plants have an expanded TPX2 family and these family members have both redundant and unique functions. Moreover, as neither TPXL2 nor TPXL3 contains the C-terminal Kinesin-5 binding domain present in the canonical TPX2, the targeting and activity of this kinesin must be organized differently in plants

    Treatment intensification in HIV-infected Patients is associated With reduced Frequencies of regulatory T cells

    Get PDF
    In untreated HIV infection, the efficacy of T cell responses decreases over the disease course, resulting in disease progression. The reasons for this development are not completely understood. However, immunosuppressive cells are supposedly crucially involved. Treatment strategies to avoid the induction of these cells preserve immune functions and are therefore the object of intense research efforts. In this study, we assessed the effect of treatment intensification [= 5-drug antiretroviral therapy (ART)] on the development of suppressive cell subsets. The New Era (NE) study recruited patients with primary HIV infection (PHI) or chronically HIV-infected patients with conventional ART (CHI) and applied an intensified 5-drug regimen containing maraviroc and raltegravir for several years. We compared the frequencies of the immune suppressive cells, namely, the myeloid-derived suppressor cells (MDSCs), regulatory B cells (Bregs), and regulatory T cells (Tregs), of the treatment intensification patients to the control groups, especially to the patients with conventional 3-drug ART, and analyzed the Gag/Nef-specific CD8 T cell responses. There were no differences between PHI and CHI in the NE population (p > 0.11) for any of the studied cell types. Polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC), monocytic myeloid-derived suppressor cell (M-MDSC), and the Breg frequencies were comparable to those of patients with a 3-drug ART. However, the Treg levels were significantly lower in the NE patients than those in 3ART-treated individuals and other control groups (p = 0.0033). The Gag/Nef-specific CD8 T cell response was broader (p = 0.0134) with a higher magnitude (p = 0.026) in the NE population than that in the patients with conventional ART. However, we did not find a correlation between the frequency of the immune suppressive cells and the interferon-gamma+ CD8 T cell response. In the treatment intensification subjects, the frequencies of the immune suppressive cells were comparable or lower than those of the conventional ART-treated subjects, with surprisingly broad HIV-specific CD8 T cell responses, suggesting a preservation of immune function with the applied treatment regimen. Interestingly, these effects were seen in both treatment intensification subpopulations and were not attributed to the start of treatment in primary infection

    The interurban DRAG-Spain model: the main factors of influence on road accidents in Spain

    Get PDF
    This paper presents the results of applying DRAG methodology to the identification of the main factors of influence on the number of injury and fatal accidents occurring on Spain’s interurban network. Nineteen independent variables have been included in the model grouped together under ten categories: exposure, infrastructure, weather, drivers, economic variables, vehicle stock, surveillance, speed and legislative measures. Highly interesting conclusions can be reached from the results on the basis of the different effects of a single variable on each of the accident types according to severity. The greatest influence revealed by the results is exposure, which together with inexperienced drivers, speed and an ageing vehicle stock, have a negative effect, while the increased surveillance on roads, the improvement in the technological features of vehicles and the proportion of high capacity networks have a positive effect, since the results obtained show a significant drop in accidents
    corecore