55 research outputs found

    Aspirations and common tensions : larger lessons from the third US national climate assessment

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climatic Change 135 (2016): 187-201, doi:10.1007/s10584-015-1530-z.The Third US National Climate Assessment (NCA3) was produced by experts in response to the US Global Change Research Act of 1990. Based on lessons learned from previous domestic and international assessments, the NCA3 was designed to speak to a broad public and inform the concerns of policy- and decision-makers at different scales. The NCA3 was also intended to be the first step in an ongoing assessment process that would build the nation’s capacity to respond to climate change. This concluding paper draws larger lessons from the insights gained throughout the assessment process that are of significance to future US and international assessment designers. We bring attention to process and products delivered, communication and engagement efforts, and how they contributed to the sustained assessment. Based on areas where expectations were exceeded or not fully met, we address four common tensions that all assessment designers must confront and manage: between (1) core assessment ingredients (knowledge base, institutional set-up, principled process, and the people involved), (2) national scope and subnational adaptive management information needs, (3) scope, complexity, and manageability, and (4) deliberate evaluation and ongoing learning approaches. Managing these tensions, amidst the social and political contexts in which assessments are conducted, is critical to ensure that assessments are feasible and productive, while its outcomes are perceived as credible, salient, and legitimate

    Planning for Sustainability in Small Municipalities: The Influence of Interest Groups, Growth Patterns, and Institutional Characteristics

    Get PDF
    How and why small municipalities promote sustainability through planning efforts is poorly understood. We analyzed ordinances in 451 Maine municipalities and tested theories of policy adoption using regression analysis.We found that smaller communities do adopt programs that contribute to sustainability relevant to their scale and context. In line with the political market theory, we found that municipalities with strong environmental interests, higher growth, and more formal governments were more likely to adopt these policies. Consideration of context and capacity in planning for sustainability will help planners better identify and benefit from collaboration, training, and outreach opportunities

    Framework for sustained climate assessment in the United States

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society, 100(5), (2019): 897-908, doi:10.1175/BAMS-D-19-0130.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report

    Evaluating knowledge to support climate action: A framework for sustained assessment. report of an independent advisory committee on applied climate assessment.

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather Climate and Society 11(3), (2019):465-487, doi: 10.1175/WCAS-D-18-0134.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.2020-05-2

    Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission

    Get PDF
    Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response
    corecore