233 research outputs found

    Liposome Circulation Time is Prolonged by CD47 Coating.

    Get PDF
    INTRODUCTION: Bio-degradable nano-particles have many applications as drug delivery vehicles because of their good bio-availability, controlled release, low toxicity and potential for encapsulation. However, the most important obstacle to nanoparticulate drug delivery is elimination by macrophages which reduces the residence time of nanoparticles in the blood. To overcome this problem, the surface of the nanoparticle can be passivated by coating with Polyethylene glycol (PEG). However, the use of PEG has its own disadvantages. CD47 receptor acts as a self marker on the surface of many cells and inhibits phagocytosis. This study used a CD47 mimicry peptide as a substitute for PEG to fabricate "stealth" nanoliposome with reduced macrophage clearance. METHODS: Doxorubibin was used as a model drug because of its inherent fluorescence. Doxorubicin-containing liposomes were coated with different percentages of CD47 mimicry peptide (0.5% and 1%). PEGfunctionalized doxorubicin-containing liposomes, were used as a comparator. The liposomal formulations were intravenously injected into mice. Serum was collected at pre-defined time points and tissue samples were taken at 24 hours. Fluorescence was used to determine the concentration doxorubicin in serum, heart, spleen, kidney, liver and lung tissues. RESULTS: Tissue biodistribution and serum kinetic studies indicated that compared with PEG, the use of CD47 mimicry peptide increased the circulation time of doxorubicin in the circulation. Moreover, unwanted accumulation of doxorubicin in the reticuloendothelial tissues (liver and spleen), kidney and heart was significantly decreased by the CD47 mimicry peptide. CONCLUSION: The use of a CD47 mimicry peptide on the surface of nanoliposomes improved the residence time of liposomal doxorubicin in the circulation. The accumulation of drug in non-target tissues was reduced, thereby potentially reducing toxicity

    Potentiating Effects of MPL on DSPC Bearing Cationic Liposomes Promote Recombinant GP63 Vaccine Efficacy: High Immunogenicity and Protection

    Get PDF
    Visceral leishmaniasis (VL), a vector-transmitted disease caused by Leishmania donovani, is potentially fatal if left untreated. Vaccination against VL has received limited attention compared with cutaneous leishmaniasis, although the need for an effective vaccine is pressing for the control of the disease. Earlier, we observed protective efficacy using leishmanial antigen (Ag) in the presence of either cationic liposomes or monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) against experimental VL through the intraperitoneal (i.p.) route of administration in the mouse model. However, this route of immunization is not adequate for human use. For this work, we developed vaccine formulations combining cationic liposomes with MPL-TDM using recombinant GP63 (rGP63) as protein Ag through the clinically relevant subcutaneous (s.c.) route. Two s.c. injections with rGP63 in association with cationic liposomes and MPL-TDM showed enhanced immune responses that further resulted in high protective levels against VL in the mouse model. This validates the combined use of MPL-TDM as an immunopotentiator and liposomes as a suitable vaccine delivery system

    SUMOylation of Syntaxin1A regulates presynaptic endocytosis

    Get PDF
    Neurotransmitter release from the presynaptic terminal is under very precise spatial and temporal control. Following neurotransmitter release, synaptic vesicles are recycled by endocytosis and refilled with neurotransmitter. During the exocytosis event leading to release, SNARE proteins provide most of the mechanical force for membrane fusion. Here, we show one of these proteins, Syntaxin1A, is SUMOylated near its C-terminal transmembrane domain in an activity-dependent manner. Preventing SUMOylation of Syntaxin1A reduces its interaction with other SNARE proteins and disrupts the balance of synaptic vesicle endo/exocytosis, resulting in an increase in endocytosis. These results indicate that SUMOylation regulates the emerging role of Syntaxin1A in vesicle endocytosis, which in turn, modulates neurotransmitter release and synaptic function

    Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation

    Full text link
    [EN] This paper presents a methodology to assess the stakeholders¿ influence in a research project within the context of responsible research and innovation. The methodology is based on a combination of the multicriteria decision making technique analytic network process and the key areas of responsible research. The method allows ranking and ordering the project¿s stakeholders based on their influence upon its responsibility. The purpose of such an assessment is to help research teams to more efficiently devote their limited resources to stakeholder management. The procedure is applied to a case study of the Information and Communication Technology business sector. It is an ongoing project at an early phase of development. Influential stakeholders have been identified first, and have been further classified into groups based on their relative importance. The assessment of their influence has been based on up to 16 different criteria, mainly belonging to the framework of responsible research and innovation. In the case study, the most influential criterion was the Capability to promote public engagement, while Developers were found to be the stakeholders most contributing to the research project responsibility. However, as explained, this is a temporary situation, valid for the current project development situation. It may vary over time as criteria vary in weight and stakeholders vary in influence.The authors would like to thank to our anonymous referees for their constructive comments and suggestions that helped us to improve the quality of the paper. Also, to the “Bolívar Gana con Ciencia” program from the Gobernación de Bolívar (Colombia) for the financial support. For the same reason, the authors are grateful to the Spanish Agencia Estatal de Investigación for its support of the project Propuesta de Indicadores para Impulsar el Diseño de Una Política Orientada al Desarrollo de Investigación e Innovación Responsable en España (CSO2016-76828-R)Ligardo-Herrera, I.; Gómez-Navarro, T.; Gonzalez-Urango, H. (2018). Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation. Central European Journal of Operations Research. 1-23. https://doi.org/10.1007/s10100-018-0573-4S123Akbari N, Irawan CA, Jones DF, Menachof D (2017) A multi-criteria port suitability assessment for developments in the offshore wind industry. Renew Energy 102:118–133. https://doi.org/10.1016/j.renene.2016.10.035Aragonés-Beltrán P, García-Melón M, Montesinos-Valera J (2017) How to assess stakeholders’ influence in project management? A proposal based on the analytic network process. Int J Proj Manag. https://doi.org/10.1016/j.ijproman.2017.01.001Barrios Ortiz MA, De Felice F, Negrete KP et al (2016) An AHP-topsis integrated model for selecting the most appropriate tomography equipment. Int J Inf Technol Decis Mak 15:861–885. https://doi.org/10.1142/S021962201640006XBhupendra KV, Sangle S (2017) What drives successful implementation of product stewardship strategy? The role of absorptive capability. Corp Soc Responsib Environ Manag 24:186–198. https://doi.org/10.1002/csr.1394Botero C, Pereira C, Tosic M, Manjarrez G (2015) Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast Manag 108:65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017Brugha R (2000) Stakeholder analysis: a review. Health Policy Plan 15:239–246. https://doi.org/10.1093/heapol/15.3.239Burget M, Bardone E, Pedaste M (2017) Definitions and conceptual dimensions of responsible research and innovation: a literature review. Sci Eng Ethics. https://doi.org/10.1007/s11948-016-9782-1Caballero-Luque A, Aragonés-Beltrán P, García-Melón M, Dema-Pérez C (2010) Analysis of the alignment of Company goals to Web content using ANP. Int J Inf Technol Decis Mak 9:419–436. https://doi.org/10.1142/S0219622010003889Claudia K, Köppl A, Stagl S (2014) Towards an operational measurement of socio-ecological performance. Working Paper no 52Colin E, Ackermann F (1998) Making strategy: the journey of strategic management. SAGE Publications Ltd, LondonDahlsrud A (2006) How corporate social responsibility is defined: an analysis of 37 definitions. Corp Soc Responsib Environ Manag 13:1–13. https://doi.org/10.1002/csrde Jong IM, Kupper F, Broerse J (2016) Inclusive deliberation and action in emerging RRI practices: the case of neuroimaging in security management. J Responsib Innov 3:26–49. https://doi.org/10.1080/23299460.2015.1137752De Lopez T (2001) Stakeholder management for conservation projects: a case study of Ream National Park, Cambodia. J Environ Manag 28:47–60De Lotto R, Gazzola V, Gossenberg S et al (2016) Proposal to reduce natural risks: analytic network process to evaluate efficiency of city planning strategies. Springer, Cham, pp 650–664European Commission (2011) DG Research workshop on Responsible Research & Innovation in EuropeGeoghegan-Quinn M (2012) Responsible research and innovation. Europe’s ability to respond to societal challengesGörener A (2012) Comparing AHP and ANP: an application of strategic decisions making in a Manufacturing Company. Int J Bus Soc Sci 3:194–208Jaafari A, Najafi A, García-Melón M (2015) Decision-making for the selection of a best wood extraction method: an analytic network process approach. For Policy Econ 50:200–209. https://doi.org/10.1016/j.forpol.2014.09.010Koops BJ (2015) The concepts, approaches, and applications of responsible innovations: an introduction. In: Koops BJ, Oosterlaken I, Romijn H, Swierstra T, van den Hoven J (eds) Responsible innovation 2: concepts, approaches, and applications. Springer, Dordrecht, pp 1–15Ligardo-Herrera I, Gómez-Navarro T, Inigo EA, Blok V (2018) Addressing climate change in responsible research and innovation: recommendations for its operationalization. Sustainability 10:20. https://doi.org/10.3390/su10062012Lubberink R, Blok V, van Ophem J, Omta O (2017) Lessons for responsible innovation in the business context: a systematic literature review of responsible, social and sustainable innovation practices. Sustainability. https://doi.org/10.3390/su9050721Mitchell RK, Agle BR, Wood DJ (1997) Toward a theory of stakeholder identification and salience: defining the principle of who and what really. Acad Manag Rev 22:853–886. https://doi.org/10.5465/AMR.1997.9711022105Owen R, Bessant J, Heintz M (2013) Responsible innovation: managing the responsible emergence of science and innovation in society. Wiley, New YorkPeris J, García-Melón M, Gómez-Navarro T, Calabuig C (2013) Prioritizing local agenda 21 programmes using analytic network process: a Spanish case study. Sustain Dev 21:338–352. https://doi.org/10.1002/sd.514Ramzan N, Degenkolbe S, Witt W (2008) Evaluating and improving environmental performance of HC’s recovery system: a case study of distillation unit. Chem Eng J 140:201–213. https://doi.org/10.1016/j.cej.2007.09.042Rosso M, Bottero M, Pomarico S et al (2014) Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy Policy 67:870–881. https://doi.org/10.1016/j.enpol.2013.12.007Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26. https://doi.org/10.1016/0377-2217(90)90057-ISaaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces (Providence) 24:19–43Saaty TL (2001) The analytic network process: decision making with dependence and feedback. RWS Publications, PittsburghSaaty TL (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. The Analytic Hierarchy Process (AHP) and its generalization to dependence and feedback, the Analytic Network Process (ANP), are methods of relative measurement of tangibles and intangibles. Being able to derive such measurements is essential for making goSaaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83. https://doi.org/10.1504/IJSSCI.2008.017590Saaty TL, Peniwati K (2008) Group decision making : drawing out and reconciling differences. RWS Publications, PittsburghSangle S, Babu PR (2007) Evaluating sustainability practices in terms of stakeholders’ satisfaction. Int J Bus Gov Ethics 3:56. https://doi.org/10.1504/IJBGE.2007.011934Shiau TA, Chuen-Yu JK (2016) Developing an indicator system for measuring the social sustainability of offshore wind power farms. Sustainability. https://doi.org/10.3390/su8050470Šijanec M, Žarnić R, Šelih J (2009) Multicriterial sustainability assessment of residential buildings. Technol Econ Dev Econ 15:612–630. https://doi.org/10.3846/1392-8619.2009.15.612-630Sipahi S, Timor M (2010) The analytic hierarchy process and analytic network process: an overview of applications. Manag Decis 48:775–808. https://doi.org/10.1108/00251741011043920Sólnes J (2003) Environmental quality indexing of large industrial development alternatives using AHP. Environ Impact Assess Rev 23:283–303. https://doi.org/10.1016/S0195-9255(03)00004-0Stahl BC, Coeckelbergh M (2016) Ethics of healthcare robotics: towards responsible research and innovation. Rob Auton Syst 86:152–161. https://doi.org/10.1016/j.robot.2016.08.018Stilgoe J, Owen R, Macnaghten P (2013) Developing a framework for responsible innovation. Res Policy 42:1568–1580. https://doi.org/10.1016/j.respol.2013.05.008Strand R, Spaapen J, Bauer MW et al (2015) Indicators for promoting and monitoring responsible research and innovation report from the expert group on policy indicatorsVaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169:1–29. https://doi.org/10.1016/j.ejor.2004.04.028van de Poel I, Asveld L, Flipse S et al (2017) Company strategies for responsible research and innovation (RRI): a conceptual model. Sustainability 9:2045. https://doi.org/10.3390/su9112045Von Schomberg R (2011) Prospects for technology assessment in a framework of responsible research and innovation. Tech abschätzen lehren Bild transdisziplinärer Methoden. https://doi.org/10.1007/978-3-531-93468-6_2Wu X, Cui P (2016) A study of the time-space evolution characteristics of urban-rural integration development in a mountainous area based on ESDA-GIS: the case of the Qinling-Daba mountains in China. Sustainability 8:1085. https://doi.org/10.3390/su8111085Yüksel I, Dagdeviren M (2007) Using the analytic network process (ANP) in a SWOT analysis—a case study for a textile firm. Inf Sci (NY) 177:3364–3382. https://doi.org/10.1016/j.ins.2007.01.00

    Evaluation of Leishmania donovani Protein Disulfide Isomerase as a Potential Immunogenic Protein/Vaccine Candidate against Visceral Leishmaniasis

    Get PDF
    In Leishmania species, Protein disulfide isomerase (PDI) - a redox chaperone, is reported to be involved in its virulence and survival. This protein has also been identified, through proteomics, as a Th1 stimulatory protein in the soluble lysate of a clinical isolate of Leishmania donovani (LdPDI). In the present study, the molecular characterization of LdPDI was carried out and the immunogenicity of recombinant LdPDI (rLdPDI) was assessed by lymphocyte proliferation assay (LTT), nitric oxide (NO) production, estimation of Th1 cytokines (IFN-γ and IL-12) as well as IL-10 in PBMCs of cured/endemic/infected Leishmania patients and cured L. donovani infected hamsters. A significantly higher proliferative response against rLdPDI as well as elevated levels of IFN-γ and IL-12 were observed. The level of IL-10 was found to be highly down regulated in response to rLdPDI. A significant increase in the level of NO production in stimulated hamster macrophages as well as IgG2 antibody and a low level of IgG1 in cured patient's serum was observed. Higher level of IgG2 antibody indicated its Th1 stimulatory potential. The efficacy of pcDNA-LdPDI construct was further evaluated for its prophylactic potential. Vaccination with this construct conferred remarkably good prophylactic efficacy (∼90%) and generated a robust cellular immune response with significant increases in the levels of iNOS transcript as well as TNF-α, IFN-γ and IL-12 cytokines. This was further supported by the high level of IgG2 antibody in vaccinated animals. The in vitro as well as in vivo results thus indicate that LdPDI may be exploited as a potential vaccine candidate against visceral Leishmaniasis (VL)

    La Relación Entre la Motivación Docente y Variables de la Organización: Revisión de la Literatura

    Get PDF
    Abstract Teacher motivation plays a central role in education because ofitsimpacton student motivation. Previous reviews of teacher motivation have focused on individual variables and psychopathology indicators. However, it is also important to understand the effect of organizational variableson teacher motivationbecause these highlightthe contextthat the teacher is a part of(i.e.,the school). The literature review in this paper analysed studies related to teacher motivation and a pre-defined group of organizational variablesthat werepublished between 1990 and 2014 in several electronic databases.The study found that organizational culture was the most studied variable associated with teacher motivationand most studies in this area were published between 2010 and 2014.Further,there was a prevalence of quantitative studies. This paper concludes with the theoreticaland practical implications of the results,as well assuggestions for future research directions
    corecore