1,154 research outputs found

    Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    Get PDF
    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric alpha-hemolysin pore (alpha HL) has been engineered to form a nanoreactor to study covalent chemistry at the single -molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different alpha HL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic alpha HL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single -molecule level

    Construction and Nonclinical Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine

    Get PDF
    Puumala virus (PUUV) is a causative agent of hemorrhagic fever with renal syndrome (HFRS). Although PUUV-associated HFRS does not result in high case-fatality rates, the social and economic impact is considerable. There is no licensed vaccine or specific therapeutic to prevent or treat HFRS. Here we report the synthesis of a codon-optimized, full-lengthMsegment open reading frame and its cloning into a DNA vaccine vector to produce the plasmid pWRG/PUU-M(s2). pWRG/PUU-M(s2) delivered by gene gun produced high-titer neutralizing antibodies in hamsters and nonhuman primates. Vaccination with pWRG/ PUU-M(s2) protected hamsters against infection with PUUV but not against infection by related HFRS-associated hantaviruses. Unexpectedly, vaccination protected hamsters in a lethal disease model of Andes virus (ANDV) in the absence of ANDV crossneutralizing antibodies. This is the first evidence that an experimental DNA vaccine for HFRS can provide protection in a hantavirus lethal disease model

    Shift in the Intrinsic Excitability of Medial Prefrontal Cortex Neurons following Training in Impulse Control and Cued-Responding Tasks

    Get PDF
    Impulse control is an executive process that allows animals to inhibit their actions until an appropriate time. Previously, we reported that learning a simple response inhibition task increases AMPA currents at excitatory synapses in the prelimbic region of the medial prefrontal cortex (mPFC). Here, we examined whether modifications to intrinsic excitability occurred alongside the synaptic changes. To that end, we trained rats to obtain a food reward in a response inhibition task by withhold responding on a lever until they were signaled to respond. We then measured excitability, using whole-cell patch clamp recordings in brain slices, by quantifying action potentials generated by the injection of depolarizing current steps. Training in this task depressed the excitability of layer V pyramidal neurons of the prelimbic, but not infralimbic, region of the mPFC relative to behavioral controls. This decrease in maximum spiking frequency was significantly correlated with performance on the final session of the task. This change in intrinsic excitability may represent a homeostatic mechanism counterbalancing increased excitatory synaptic inputs onto those neurons in trained rats. Interestingly, subjects trained with a cue that predicted imminent reward availability had increased excitability in infralimbic, but not the prelimbic, pyramidal neurons. This dissociation suggests that both prelimbic and infralimbic neurons are involved in directing action, but specialized for different types of information, inhibitory or anticipatory, respectively

    Expression and function of αβ1 integrins in pancretic beta (INS-1) cells

    Get PDF
    Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment

    Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain

    Get PDF
    The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca2+ and Gq/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6–9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2–6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    A selective cyclic integrin antagonist blocks the integrin receptors α(v)β(3 )and α(v)β(5 )and inhibits retinal pigment epithelium cell attachment, migration and invasion

    Get PDF
    BACKGROUND: Proliferative vitreoretinopathy (PVR) is a leading cause of blindness after failed retinal reattachment surgery. PVR is characterized by the proliferation, migration and contraction of retinal pigmented epithelial cells (RPE), and these cellular responses are influenced by the expression and function of integrin receptors. The effect of a cyclic integrin antagonist containing the amino acid sequence Arg-Gly-Asp-D-Phe-Val (RGDfV), specific for the integrin receptors α(v)β(3 )and α(v)β(5), was investigated on basic fibroblast growth factor (bFGF), platelet derived growth factor-BB (PDGF-BB), and serum induced human RPE proliferation, migration, invasion and attachment to the extracellular matrix. Furthermore, the effects of bFGF and PDGF-BB regulated expression of integrins α(v)β(3 )and α(v)β(5 )on RPE cells was examined. METHODS: The effect of a cyclic integrin antagonist and a control peptide (0.01 μg/ml to 300 μg/ml) was investigated on serum or cytokine (bFGF or PDGF-BB pretreatment) induced human fetal RPE cell proliferation by H(3)-thymidine uptake. The effect of the cyclic integrin antagonist on RPE cell attachment onto different extracellular matrices (laminin, collagen IV, fibronectin), RPE cell invasion stimulated by PDGF-BB or serum, and migration stimulated by PDGF-BB, vascular endothelial growth factor (VEGF) or serum was explored. PDGF-BB and bFGF modulation of the integrin receptors α(v)β(3 )and α(v)β(5 )was evaluated by flow cytometry. RESULTS: The integrin antagonist did not inhibit DNA synthesis stimulated by serum, bFGF, or PDGF-BB treatment. RPE attachment onto fibronectin was inhibited in a concentration range of 1–10 μg/ml (p < 0.05). Attachment of the RPE cells onto collagen IV and laminin was inhibited in a range of 3–10 μg/ml (p < 0.05). Serum and PDGF-BB stimulated migration was inhibited by the cyclic integrin antagonist in a concentration range of 1–10 μg/ml (p < 0.05). Furthermore, the cyclic integrin antagonist inhibited PDGF-BB stimulated RPE cell invasion through fibronectin (3μg/ml: 66% inhibition, p < 0.001). In each of these experiments, the control peptides had no significant effects. PDGF-BB and bFGF pretreatment of RPE cells increased the expression of integrin receptors α(v)β(3 )(bFGF: 1.9 fold, PDGF-BB: 2.3 fold) and α(v)β(5 )(bFGF: 2.9 fold, PDGF-BB: 1.5 fold). CONCLUSION: A selective inhibition of the integrin receptors α(v)β(3 )and α(v)β(5 )through a cyclic integrin antagonist is able to inhibit RPE cell attachment, migration and invasion. Since these steps are of importance for the progression of PVR, a cyclic integrin antagonist should be further evaluated for the treatment of this disease

    Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens

    Get PDF
    Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward
    corecore