523 research outputs found

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold

    Jaguar Densities across Human-Dominated Landscapes in Colombia: The Contribution of Unprotected Areas to Long Term Conservation

    Get PDF
    Large carnivores such as jaguars (Panthera onca) are species of conservation concern because they are suffering population declines and are keystone species in their ecosystems. Their large area requirements imply that unprotected and ever-increasing agricultural regions can be important habitats as they allow connectivity and dispersal among core protected areas. Yet information on jaguar densities across unprotected landscapes it is still scarce and crucially needed to assist management and range-wide conservation strategies. Our study provides the first jaguar density estimates of Colombia in agricultural regions which included cattle ranching, the main land use in the country, and oil palm cultivation, an increasing land use across the Neotropics. We used camera trapping across two agricultural landscapes located in the Magdalena River valley and in the Colombian llanos (47–53 stations respectively; >2000 trap nights at both sites) and classic and spatially explicit capture-recapture models with the sex of individuals as a covariate. Density estimates were 2.52±0.46–3.15±1.08 adults/100 km2 in the Magdalena valley, whereas 1.12±0.13–2.19±0.99 adults/100 km2 in the Colombian llanos, depending on analysis used. We suggest that jaguars are able to live across unprotected human-use areas and co-exist with agricultural landscapes including oil-palm plantations if natural areas and riparian habitats persist in the landscape and hunting of both jaguar and prey is limited. In the face of an expanding agriculture across the tropics we recommend land-use planning, adequate incentives, regulations, and good agricultural practices for range-wide jaguar connectivity and survival

    Eukaryotic Evolutionary Transitions Are Associated with Extreme Codon Bias in Functionally-Related Proteins

    Get PDF
    Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins – perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair – a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function – which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins – perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor – which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation

    HIV-induced immune activation - pathogenesis and clinical relevance. Summary of a workshop organised by the German AIDs Society (DAIG e.v.) and the ICH Hamburg, Hamburg, Germany, November 22, 2008

    Get PDF
    This manuscript is communicated by the German AIDS Society (DAIG) http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V.)

    Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV

    Get PDF
    The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects

    Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ¯ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ¯ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ¯ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV

    Observation of the decay Λ <sub>b</sub> <sup>0</sup>  → ψ(2S)pπ<sup>−</sup>

    Get PDF
    International audienceThe Cabibbo-suppressed decay Λb0_{b}^{0}  → ψ(2S)pπ^{−} is observed for the first time using a data sample collected by the LHCb experiment in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb1^{−1} of integrated luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The ψ(2S) mesons are reconstructed in the μ+^{+}μ^{−} final state. The branching fraction with respect to that of the Λb0_{b}^{0}  → ψ(2S)pK^{−} decay mode is measured to b

    Evidence for an nc(1S)ff- resonance in B0 yc(1S)K+ decays

    Get PDF
    A Dalitz plot analysis of B0→ηc(1S)K+π- decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of s=7,8 and 13TeV , corresponding to a total integrated luminosity of 4.7fb-1 . A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S)π- resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096±20-22+18MeV and 152±58-35+60MeV , respectively. The spin-parity assignments JP=0+ and JP=1- are both consistent with the data. In addition, the first measurement of the B0→ηc(1S)K+π- branching fraction is performed and gives B(B0→ηc(1S)K+π-)=(5.73±0.24±0.13±0.66)×10-4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions
    corecore