3,459 research outputs found

    High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin

    Get PDF
    Using a combination of NMR and fluorescence measurements, we have investigated the structure and dynamics of the complexes formed between calcium-loaded calmodulin (CaM) and the potent breast cancer inhibitor idoxifene, a derivative of tamoxifen. High-affinity binding (Kd∼300 nM) saturates with a 2:1 idoxifene:CaM complex. The complex is an ensemble where each idoxifene molecule is predominantly in the vicinity of one of the two hydrophobic patches of CaM but, in contrast with the lower-affinity antagonists TFP, J-8, and W-7, does not substantially occupy the hydrophobic pocket. At least four idoxifene orientations per domain of CaM are necessary to satisfy the intermolecular nuclear Overhauser effect (NOE) restraints, and this requires that the idoxifene molecules switch rapidly between positions. The CaM molecule is predominantly in the form where the N and C-terminal domains are in close proximity, allowing for the idoxifene molecules to contact both domains simultaneously. Hence, the 2:1 idoxifene:CaM complex illustrates how high-affinity binding occurs without the loss of extensive positional dynamics

    Site-specific incorporation of phosphotyrosine using an expanded genetic code.

    Get PDF
    Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key to understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analog that is convertible to native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine sites and functions, and reveal a possible role of tyrosine phosphorylation in negative regulation of ubiquitination

    The native architecture of a photosynthetic membrane

    Get PDF
    In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll–protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10–20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)–light-harvesting 1 (RC–LH1–PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide

    Multifrequency Strategies for the Identification of Gamma-Ray Sources

    Full text link
    More than half the sources in the Third EGRET (3EG) catalog have no firmly established counterparts at other wavelengths and are unidentified. Some of these unidentified sources have remained a mystery since the first surveys of the gamma-ray sky with the COS-B satellite. The unidentified sources generally have large error circles, and finding counterparts has often been a challenging job. A multiwavelength approach, using X-ray, optical, and radio data, is often needed to understand the nature of these sources. This chapter reviews the technique of identification of EGRET sources using multiwavelength studies of the gamma-ray fields.Comment: 35 pages, 22 figures. Chapter prepared for the book "Cosmic Gamma-ray Sources", edited by K.S. Cheng and G.E. Romero, to be published by Kluwer Academic Press, 2004. For complete article and higher resolution figures, go to: http://www.astro.columbia.edu/~muk/mukherjee_multiwave.pd

    The Shale revolution: Global gas and oil markets under transformation

    Get PDF
    The shale gas and oil revolution has unexpectedly and forcefully begun to change the energy landscape in the USA. It is expected to spread beyond the USA, with far reaching implications for the global energy map, but also for the macro economy and politics of many countries. The purpose of this paper is to bring a better understanding to what prompted the revolution, to assess the production methods and associated environmental concerns, to speculate what can reasonably be expected in coming decades, and to sketch the full impact of a ripening shale revolution on the emerging economic and political policy choices for energy exporting and importing countries. We find that a large scale expansion can be expected in US shale gas and oil activities in the coming two decades. Globally, the shale leaders are likely to be countries that are already significant gas and oil producers. Setting up a policy framework to allow and promote shale development in a safe manner is a necessity for the launch of shale exploitation. The most important implication of a successful shale revolution would arguably be a downward pressure on gas and coal prices in regional markets and on the global oil price

    Estimating the incidence of acute infectious intestinal disease in the community in the UK:A retrospective telephone survey

    Get PDF
    Objectives: To estimate the burden of intestinal infectious disease (IID) in the UK and determine whether disease burden estimations using a retrospective study design differ from those using a prospective study design. Design/Setting: A retrospective telephone survey undertaken in each of the four countries comprising the United Kingdom. Participants were randomly asked about illness either in the past 7 or 28 days. Participants: 14,813 individuals for all of whom we had a legible recording of their agreement to participate Outcomes: Self-reported IID, defined as loose stools or clinically significant vomiting lasting less than two weeks, in the absence of a known non-infectious cause. Results: The rate of self-reported IID varied substantially depending on whether asked for illness in the previous 7 or 28 days. After standardising for age and sex, and adjusting for the number of interviews completed each month and the relative size of each UK country, the estimated rate of IID in the 7-day recall group was 1,530 cases per 1,000 person-years (95% CI: 1135 – 2113), while in the 28-day recall group it was 533 cases per 1,000 person-years (95% CI: 377 – 778). There was no significant variation in rates between the four countries. Rates in this study were also higher than in a related prospective study undertaken at the same time. Conclusions: The estimated burden of disease from IID varied dramatically depending on study design. Retrospective studies of IID give higher estimates of disease burden than prospective studies. Of retrospective studies longer recall periods give lower estimated rates than studies with short recall periods. Caution needs to be exercised when comparing studies of self-reported IID as small changes in study design or case definition can markedly affect estimated rates
    corecore