6 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Seroprevalence of HIV, HBV, HCV and syphilis infections among blood donors at Gondar University Teaching Hospital, Northwest Ethiopia: declining trends over a period of five years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transfusion-transmissible infectious agents such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) and syphilis are among the greatest threats to blood safety for the recipient. This study aimed to determine the seroprevalence, risk factors and trends of HIV, HBV, HCV and syphilis infections among blood donors over a period of five years at Gondar University Teaching Hospital, Northwest Ethiopia.</p> <p>Methods</p> <p>A retrospective analysis of consecutive blood donors' records covering the period between January 2003 and December 2007 was conducted. Logistic regression analysis was used to determine risk factors associated with HIV, HBV, HCV and syphilis infections.</p> <p>Results</p> <p>From the total of 6361 consecutive blood donors, 607 (9.5%) had serological evidence of infection with at least one pathogen and 50 (0.8%) had multiple infections. The overall seroprevalence of HIV, HBV, HCV and syphilis was 3.8%, 4.7%, 0.7%, and 1.3% respectively. Among those with multiple infections, the most common combinations were HIV - syphilis 19 (38%) and HIV - HBV 17 (34%). The seropositivity of HIV was significantly increased among female blood donors, first time donors, housewives, merchants, soldiers, drivers and construction workers. Significantly increased HBV seropositivity was observed among farmers, first time donors and age groups of 26 - 35 and 36 - 45 years. Similarly, the seroprevalence of syphilis was significantly increased among daily labourers and construction workers. Statistically significant association was observed between syphilis and HIV infections, and HCV and HIV infections. Moreover, significantly declining trends of HIV, HCV and syphilis seropositivity were observed over the study period.</p> <p>Conclusions</p> <p>A substantial percentage of the blood donors harbour HIV, HBV, HCV and syphilis infections. Strict selection of blood donors and comprehensive screening of donors' blood using standard methods are highly recommended to ensure the safety of blood for recipient.</p

    The human viral challenge model: accelerating the evaluation of respiratory antivirals, vaccines and novel diagnostics

    No full text
    corecore