23 research outputs found

    History of discovery of the patagonian lizards

    Get PDF
    Knowledge of the history is necessary to understand why things are today as they are. Argentinean and Chilean Patagonia have a very interesting story about the native fauna and its discovery. The main character of this story is an adventurer spirit wanting to increase knowledge by traveling to the “end of the world”, ignoring barriers only to search and see what is beyond. Many well-known naturalists have visited this land eager and willing to find new species never seen before, while others have made some amazing contributions while never setting one foot on Patagonian soil. In this chapter, we intend to summarize how Patagonian herpetofauna was discovered, described and studied over time. In addition, we want to mention important scientists, whose work led the way for the future researchers to come.Fil: Williams, Jorge Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. DivisiĂłn ZoologĂ­a de Vertebrados. SecciĂłn HerpetologĂ­a; ArgentinaFil: Kass, Camila Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. DivisiĂłn ZoologĂ­a de Vertebrados. SecciĂłn HerpetologĂ­a; ArgentinaFil: Avila, Luciano Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; Argentin

    Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation

    Get PDF
    Signaling pathways are interconnected to regulatory circuits for sensing the environment and expressing the appropriate genetic profile. In particular, gradients of diffusing molecules (morphogens) determine cell fate at a given position, dictating development and spatial organization. The feedforward loop (FFL) circuit is among the simplest genetic architectures able to generate one-stripe patterns by operating as an amplitude detection device, where high output levels are achieved at intermediate input ones. Here, using a heuristic optimization-based approach, we dissected the design space containing all possible topologies and parameter values of the FFL circuits. We explored the ability of being sensitive or adaptive to variations in the critical morphogen level where cell fate is switched. We found four different solutions for precision, corresponding to the four incoherent architectures, but remarkably only one mode for adaptiveness, the incoherent type 4 (I4-FFL). We further carried out a theoretical study to unveil the design principle for such structural discrimination, finding that the synergistic action and cooperative binding on the downstream promoter are instrumental to achieve absolute adaptive responses. Subsequently, we analyzed the robustness of these optimal circuits against perturbations in the kinetic parameters and molecular noise, which has allowed us to depict a scenario where adaptiveness, parameter sensitivity and noise tolerance are different, correlated facets of the robustness of the I4-FFL circuit. Strikingly, we showed a strong correlation between the input (environment-related) and the intrinsic (mutation-related) susceptibilities. Finally, we discussed the evolution of incoherent regulations in terms of multifunctionality and robustness

    HDL cholesterol efflux capacity in rheumatoid arthritis patients: contributing factors and relationship with subclinical atherosclerosis

    Get PDF
    Background: Lipid profiles appear to be altered in rheumatoid arthritis (RA) patients because of disease activity and inflammation. Cholesterol efflux capacity (CEC), which is the ability of high-density lipoprotein cholesterol to accept cholesterol from macrophages, has been linked not only to cardiovascular events in the general population but also to being impaired in patients with RA. The aim of this study was to establish whether CEC is related to subclinical carotid atherosclerosis in patients with RA. Methods: We conducted a cross-sectional study that encompassed 401 individuals, including 178 patients with RA and 223 sex-matched control subjects. CEC, using an in vitro assay, lipoprotein serum concentrations, and standard lipid profile, was assessed in patients and control subjects. Carotid intima-media thickness (CIMT) and carotid plaques were assessed in patients with RA. A multivariable analysis was performed to evaluate the relationship of CEC with RA-related data, lipid profile, and subclinical carotid atherosclerosis. Results: Mean (SD) CEC was not significantly different between patients with RA (18.9 ± 9.0%) and control subjects (16.9 ± 10.4%) (p = 0.11). Patients with RA with low (? coefficient ?5.2 [?10.0 to 0.3]%, p = 0.039) and moderate disease activity (? coefficient ?4.6 [?8.5 to 0.7]%, p = 0.020) were associated with lower levels of CEC than patients in remission. Although no association with CIMT was found, higher CEC was independently associated with a lower risk for the presence of carotid plaque in patients with RA (odds ratio 0.94 [95% CI 0.89?0.98], p = 0.015). Conclusions: CEC is independently associated with carotid plaque in patients with RA

    Health for sale: the medicinal plant markets in Trujillo and Chiclayo, Northern Peru

    Get PDF
    Traditional methods of healing have been beneficial in many countries with or without access to conventional allopathic medicine. In the United States, these traditional practices are increasingly being sought after for illnesses that cannot be easily treated by allopathic medicine. More and more people are becoming interested in the knowledge maintained by traditional healers and in the diversity of medicinal plants that flourish in areas like Northern Peru. While scientific studies of medicinal plants are underway, concern has arisen over the preservation of both the large diversity of medicinal plants and the traditional knowledge of healing methods that accompanies them. To promote further conservation work, this study attempted to document the sources of the most popular and rarest medicinal plants sold in the markets of Trujillo (Mayorista and Hermelinda) and Chiclayo (Modelo and Moshoqueque), as well as to create an inventory of the plants sold in these markets, which will serve as a basis for comparison with future inventories. Individual markets and market stalls were subjected to cluster analysis based on the diversity of the medicinal plants they carry. The results show that markets were grouped based on the presence of: (1) common exotic medicinal plants; (2) plants used by laypeople for self-medication related to common ailments ("everyday remedies"); (3) specialized medicinal plants used by curanderos or traditional healers; and (4) highly "specialized" plants used for magical purposes. The plant trade in the study areas seems to correspond well with the specific health care demands from clientele in those areas. The specific market patterns of plant diversity observed in the present study represent a foundation for comparative market research in Peru and elsewhere

    Shadows of the colonial past – diverging plant use in Northern Peru and Southern Ecuador

    Get PDF
    This paper examines the traditional use of medicinal plants in Northern Peru and Southern Ecuador, with special focus on the Departments of Piura, Lambayeque, La Libertad, Cajamarca, and San Martin, and in Loja province, with special focus on the development since the early colonial period. Northern Peru represents the locus of the old Central Andean "Health Axis." The roots of traditional healing practices in this region go as far back as the Cupisnique culture early in the first millennium BC

    Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture

    Get PDF
    This paper examines the traditional use of medicinal plants in Northern Peru, with special focus on the Departments of Piura, Lambayeque, La Libertad, Cajamarca, and San Martin. Northern Peru represents the center of the old Central Andean "Health Axis," stretching from Ecuador to Bolivia. The roots of traditional healing practices in this region go at least as far back as the Moche period (AC 100–800). Although about 50% of the plants in use reported in the colonial period have disappeared from the popular pharmacopoeia, the plant knowledge of the population is much more extensive than in other parts of the Andean region. 510 plant species used for medicinal purposes were collected, identified and their vernacular names, traditional uses and applications recorded. The families best represented were Asteraceae with 69 species, Fabaceae (35), Lamiaceae (25), and Solanaceae (21). Euphorbiaceae had twelve species, and Apiaceae and Poaceae 11 species. The highest number of species was used for the treatment of "magical/ritual" ailments (207 species), followed by respiratory disorders (95), problems of the urinary tract (85), infections of female organs (66), liver ailments (61), inflammations (59), stomach problems (51) and rheumatism (45). Most of the plants used (83%) were native to Peru. Fresh plants, often collected wild, were used in two thirds of all cases, and the most common applications included the ingestion of herb decoctions or the application of plant material as poultices

    Scaling up genetic circuit design for cellular computing:advances and prospects

    Get PDF

    Amazon tree dominance across forest strata

    Get PDF
    The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 ‘hyperdominant’ species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations
    corecore