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Abstract 168 

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given 169 

the immediate threats posed by climate and land-use change, an improved understanding of 170 

how this extraordinary biodiversity is spatially organized is urgently required to develop 171 

effective conservation strategies. Most Amazonian tree species are extremely rare, but a small 172 

number are common across the region. Indeed, just 227 “hyperdominant” species account for 173 

more than 50% of all individuals > 10 cm dbh. Yet, the degree to which the phenomenon of 174 

hyperdominance is sensitive to tree size, the extent to which the composition of dominant 175 

species changes with size-class, and how evolutionary history constrains tree 176 

hyperdominance, all remain unknown. Here, we use a unique floristic dataset to show that, 177 

while hyperdominance is a universal phenomenon across forest strata, different species 178 

dominate the forest understory, midstory and canopy. We further find that although species 179 

belonging to a range of phylogenetically dispersed lineages have become hyperdominant in 180 

small size-classes, hyperdominants in large size-classes are restricted to a few lineages. These 181 

results suggest that achieving hyperdominance over large geographic regions has been much 182 

more challenging for canopy and emergent tree species than for understorey species. Our 183 

results demonstrate that it is essential to consider all forest strata in order to understand 184 

regional patterns of dominance and composition in Amazonia. More generally, through the 185 

lens of 654 hyperdominant species, we outline a tractable pathway for understanding the 186 

functioning of half of Amazonian forests across vertical strata and geographical locations.  187 

  188 
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Main text  189 

The immense diversity of Amazonian forests is one of Earth’s great natural wonders, and 190 

underpins the functioning and resilience of ecosystems1,2 that play a crucial role in the global 191 

carbon and water cycles3–5. Despite three centuries of investigation, however, our collective 192 

understanding of how this diversity is organized at regional scales remains limited6. 193 

Confronted with such overwhelming diversity, the challenge of monitoring a few hundred 194 

hyperdominant species (i.e. those species that together account for 50% of individuals across 195 

Amazonia7) becomes more tractable than monitoring the many thousands of rare species, 196 

particularly given the pace of action required for contemporary management decisions8,9. 197 

Understanding the ecology and distribution of hyperdominant species is essential because 198 

these species dominate key ecosystem processes (e.g. carbon storage and cycling10) and may 199 

serve as an effective proxy for general biodiversity patterns11.   200 

Existing studies of Amazonian hyperdominance and regional-scale dominance have been 201 

limited by excluding small-stemmed individuals (<10 cm diameter) and by considering all 202 

individuals as equivalent regardless of diameter size-class 7,11-15. Excluding small-stemmed 203 

species represents an important oversight because several thousand Amazonian tree species 204 

rarely or never reach 10 cm in diameter 16– 20. While local-scale and taxa-specific dominance 205 

has been documented in small size classes21–24, basin-wide hyperdominance in small size 206 

classes has not been confirmed. Consequently, species dominating the understory of 207 

Amazonian forests at a whole-Amazon scale are not yet identified. Treating all stems > 10 cm 208 

in diameter as equivalent is also likely to over emphasize the dominance of mid-statured tree 209 

species (e.g. 10-20 cm diameter). The power-law relationship between stem density and 210 

diameter means that small-stemmed individuals (e.g. < 20 cm) are at least an order of 211 

magnitude more abundant than larger individuals (e.g. > 50 cm)25. This skewed 212 
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understanding of dominance is highlighted by the difference between lists of hyperdominant 213 

species assembled using biomass rather than abundance10. This disparity suggests that a more 214 

nuanced approach that measures dominance separately across forest strata is required.  215 

Based on existing local-scale studies and field observations, we expect the composition of 216 

hyperdominant species to vary substantially across forest strata due to different 217 

environmental filters (e.g. variable light profiles) and different species pools. Existing studies 218 

also suggest that compositional similarity between understory and canopy hyperdominant 219 

species may vary regionally26,27, perhaps due to regional variation in forest structure and rates 220 

of turnover28. For example, western Amazonia is known to have a floristically distinct 221 

understory, whereas understory communities in central and eastern Amazonia are thought to 222 

be comprised primarily by juveniles of larger tree species26. 223 

We know that some taxonomic tree clades contain many hyperdominant species7, and that 224 

genus-level abundance has a significant phylogenetic signal29, yet no formal analysis of the 225 

phylogenetic structure of hyperdominance has been undertaken. Moreover, we may expect 226 

that hyperdominant species in different strata will display different phylogenetic patterns. 227 

Specifically, we hypothesize that hyperdominant species in large size classes from across 228 

Amazonia will be phylogenetically clustered for several reasons. First, maximum potential 229 

tree size has a significant phylogenetic signal in Amazonia30, and those genera able to occupy 230 

canopy and emergent strata are concentrated in specific lineages (e.g. families or orders) that 231 

are primarily located within a few deep clades (e.g. Fabids and Ericales)30. Second, while 232 

there is climatic variation across Amazonia, the above-canopy environment consists of high 233 

solar radiation, high temperatures, low humidity, and high diurnal variability irrespective of 234 

location31. These harsh but spatially consistent environmental conditions provide limited 235 

niche space, and are likely to filter for a distinct suite of functional characteristics that may 236 
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only have arisen in species belonging to a few specific lineages. Third, tall trees tend to 237 

disperse better than smaller trees and shrubs32,33, and at least some common large tree 238 

lineages have been well dispersed throughout Amazonia across evolutionary timescales34. 239 

This greater dispersal ability may mean that the strongest competitors for the canopy strata 240 

have been able to disperse consistently throughout Amazonia for millennia, thereby 241 

becoming hyperdominant across regions.  242 

On the other hand, we may expect hyperdominant species in small understory strata may be 243 

more phylogenetically dispersed. First, because small trees and shrubs typically are more 244 

likely to be dispersal limited32,33, the strongest understory competitors may be less likely to 245 

disperse across regions and outcompete functionally equivalent species in other locations. 246 

Secondly, understory species are often locally abundant and frequently have fast generation 247 

times35. Over evolutionary timescales these high abundances and fast generation times may 248 

be likely to increase diversification among locally-restricted understory species36. Third, the 249 

below canopy environment is more spatially heterogeneous, due to variation in forest 250 

structure, and the frequency and size of forest gaps, potentially leading to increased niche 251 

partitioning in smaller size classes. Moreover, because forest structure varies across 252 

Amazonia (e.g. taller denser canopy in Guiana shield vs shorter more dynamic canopy in 253 

western Amazonia)28, smaller-statured species may be exposed to different abiotic and biotic 254 

filters across large spatial scales, and develop greater local specialization associated with 255 

distinct functional characteristics. Therefore, we further predict that understory 256 

hyperdominants from different regions should be more distantly related than hyperdominants 257 

in larger size classes. 258 

Here we assemble a unique dataset of 1240 floristic inventory plots distributed across lowland 259 

Amazonia, which include stems as small as 2.5 cm (Figure 1). Based on individual diameter 260 
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measurements and species level identifications, we implement a spatially-stratified 261 

resampling approach to estimate basin-wide relative abundances for all tree species across six 262 

diameter size classes from the understory (2.5 – 5 cm) to the forest canopy (> 50 cm). Using 263 

this dataset, we identify those species dominating different strata of Amazonian forests and 264 

ask: Q1. Is hyperdominance a constant phenomenon across Amazonian tree strata? and Q2. 265 

Does the identity of hyperdominant species differ across Amazonian tree strata, and how does 266 

this vary regionally?  We also used a recently developed genus-level molecular 267 

phylogeny37,38 to ask Q.3 Do patterns of phylogenetic clustering in hyperdominant species 268 

vary across forest strata? And does this correspond with our expectations of increased 269 

clustering in large-stemmed canopy strata and increased phylogenetic dispersal in small-270 

stemmed understory strata?  271 
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Results and Discussion 272 

Consistent hyperdominance across strata  273 

We find that hyperdominance occurs throughout the Amazonian flora across forest strata, but 274 

the proportion of species that qualify as hyperdominant (i.e. together account for 50% of 275 

individuals) varies across size classes and regions from 3 – 12 % (Figure 2A). At the basin-276 

wide Amazonian scale, the proportion of species that qualify as hyperdominant in our dataset  277 

(~ 4%) is broadly consistent with empirically derived species counts from previous studies7,10. 278 

This consistency of hyperdominance across size classes suggests that regional dominance of 279 

tree communities is a feature shared across Amazonian forest strata.  280 

A larger species pool will necessarily result in stronger patterns of dominance because it 281 

contains more rare species, which will decrease the proportion of species that qualify as 282 

hyperdominant, even if the abundance of the most dominant species remains constant. 283 

However, the relationship between species richness and the level of dominance we observed 284 

in a given size class or region is weak and primarily driven by the basin-wide data (Figure 285 

2B). Therefore, our results suggest that variation in dominance among size classes and 286 

regions is not an artefact reflecting the variable sampling intensity among regions and size 287 

classes.  288 

Some size classes are consistently more ‘dominated’ than others (i.e. a lower proportion of 289 

species are required to account for 50% of individuals). In particular, the 10 – 20 cm size 290 

class consistently displays the strongest dominance patterns (Figure 2). The two smallest size 291 

classes have weaker dominance patterns, perhaps because smaller-stemmed species are more 292 

dispersal limited than larger individuals32, and therefore less likely to be dominant over large 293 

areas and more likely to locally diversify. A clear exception to this occurs in forests on the 294 

Guiana Shield, where patterns of dominance are stronger in larger size classes than smaller 295 
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ones. This may be partially explained by the relatively low diversity in the understory of 296 

these forests, due perhaps to greater resource limitation imposed by extreme shade from the 297 

more structured canopy in addition to low fertility associated with oligotrophic soils in this 298 

region16.  299 

The proportion of species that qualified as hyperdominant at the regional scale was generally 300 

higher than in basin-scale analyses, i.e. dominance patterns are weaker at the regional scale 301 

(Figure 2). This pattern is primarily driven by those exceptionally common and widespread 302 

species that achieve hyperdominance in two or more regions. However, several of these 303 

widespread hyperdominant species may be species complexes, as recently shown for Protium 304 

heptaphyllum and Astrocaryum murumuru 39,40. Solving these issues will require more 305 

integrative taxonomic studies (e.g. incorporating DNA analyses alongside spectroscopy39,41) 306 

of other widespread hyperdominant species, which would help to further assess the validity of 307 

hyperdominant species identifications.  308 

Southwest Amazonia exhibits stronger patterns of dominance than all other Amazonian 309 

regions in all but the largest size class (Figure 2). It is not immediately clear why this region 310 

has such strong patterns of dominance. However, it may be due in part to less environmental 311 

heterogeneity in this region, which contains relatively few areas of white-sand forest, swamp 312 

forests or seasonally-inundated forests42,43. Although we do not explicitly consider habitat 313 

type in this study, many hyperdominant species are known to be dominant only in a single 314 

habitat type7. Therefore, less environmental heterogeneity should lead to fewer 315 

hyperdominant species. The strong dominance patterns in southwestern Amazonia matter 316 

because several landmark studies have focussed on patterns of dominance in this 317 

region12,13,21, and these patterns may not be representative of Amazonia more generally44. 318 
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Identity of hyperdominant species across strata and region 319 

The identity of hyperdominant species varies substantially across forest strata and region. 320 

Over a third (38 %) of hyperdominant species are only dominant in a single size class within 321 

a single region, and nearly two thirds (62 %) are dominant in two or fewer size classes and 322 

two or fewer regions (Figure 3). Only one species, Eschweilera coriacea, achieves 323 

hyperdominance across all six size classes and all five regions. These results provide clear 324 

evidence that hyperdominant tree species composition is vertically stratified throughout 325 

Amazonia. Therefore, considering all individuals greater than 10 cm in diameter as 326 

equivalent completely overlooks the nuanced vertical stratification of tropical forests. 327 

Moreover, even though 10 cm diameter cutoff protocols are well-suited to monitor carbon 328 

fluxes3, alternative plot designs or data treatments may be better suited to monitor spatial 329 

variation in floristic diversity and composition45–47.   330 

Our multivariate analysis illustrates two strong axes of compositional variation among 331 

hyperdominant tree species (Figure 4 panel A). The first axis differentiates the five regions, 332 

while the second represents a gradient across six tree size classes. This compositional 333 

variation across strata is important because our best current methods of observing forests at 334 

large scales are through either: 1. Remote sensing approaches, which detect only those trees 335 

that reach sky-facing canopy positions; or 2. Plot networks, which are heavily influenced by 336 

species dominant in smaller or intermediate size-classes. Our results demonstrate that species 337 

dominating the view from above the canopy are different from those that dominate the view 338 

from below, thereby emphasising the mismatch between remotely sensed and plot-based 339 

studies. Addressing this mismatch will be essential to successfully integrating field and 340 

remote sensing data at large scales in Amazonia.   341 

Despite this compositional mismatch, our data also suggest that while canopy 342 

hyperdominants comprise different species from those that dominate the understory, there is 343 
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an important association in hyperdominant species composition between size classes within 344 

regions, i.e. hyperdominant species clearly form distinct regional groups across the first 345 

NMDS axis. Therefore, remotely sensed data from forest canopies may serve as an effective 346 

proxy for compositional patterns in smaller size classes, as has been found recently in 347 

understory tree, fern and lycophyte communities48,49.   348 

Our results contrast with previous observations, which suggest that the understories of 349 

Eastern Amazonia are primarily composed of juvenile individuals of large-stemmed species 350 

whereas western Amazonia has a more specialist and compositionally distinct understory26. 351 

Instead, we find that across all regions, tree species that dominate forest understory tree 352 

communities are compositionally distinct from those that dominate the canopy, i.e. in all 353 

regions hyperdominant species form a distinct compositional gradient across strata, as 354 

reflected by the second NMDS axis (Figure 4). Indeed, there is no difference in potential 355 

maximum size among understory dominant species from different regions (Figure S.2).  356 

At the family level, there is a clear positive relationship between the number of 357 

hyperdominant species and total species richness per family (Figure S3). However, our 358 

statistical null modelling approach shows that at a basin-wide scale several plant families 359 

have significantly more or fewer hyperdominant species than would be expected based on 360 

their species richness. Moreover, some families have more hyperdominant species than 361 

expected across several size classes; for example, Arecaceae, Burseraceae and Myristicaceae 362 

have more hyperdominant species than expected across all but the largest size class. Other 363 

families are overrepresented in terms of hyperdominant species in only smaller (e.g. 364 

Violaceae and Siparunaceae) or larger size classes (e.g. Moraceae). Alternatively, commonly 365 

occurring tree families including Rubiaceae and Lauraceae have consistently fewer 366 

hyperdominant species than we would expect based on their species richness.  367 
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Our results further reinforce the importance of the legume family Fabaceae in dominating 368 

Amazonian forests. At a basin-wide scale Fabaceae is the family with the greatest number of 369 

hyperdominant species across all size-classes, largely because Fabaceae is by far the most 370 

species rich family. While Fabaceae species are less common than would be expected by 371 

chance given their high species richness in small size classes, in the largest size-class 372 

Fabaceae are significantly overrepresented, and account for more than 30% of hyperdominant 373 

species. 374 

Phylogenetic structure of hyperdominance across Amazonian tree strata  375 

Our phylogenetic analyses demonstrate that while many lineages contain hyperdominant 376 

species (Figure 5), those species that are hyperdominant in the canopy of Amazonian forests 377 

show contrasting phylogenetic patterns to those that are hyperdominant in small understory 378 

strata (Figure 6).  379 

We find overall support for our prediction that hyperdominant in larger size classes tend to be 380 

concentrated in a few closely related lineages, for example in Fabaceae and Moraceae as well 381 

as Lecythidaceae and Sapotaceae. This phylogenetic clustering of canopy hyperdominant 382 

species is highlighted by our mean pairwise phylogenetic distance (MPD) null modelling 383 

analysis (Figures 6 and S4), which shows that hyperdominant species in the largest size 384 

classes are consistently more closely related than would be expected by chance. Our 385 

phylogenetic composition results reveal that canopy strata across the basin are dominated by 386 

species belonging to closely related lineages (Figure 4 panel B). The close phylogenetic 387 

relationship among large-stemmed regionally dominant tree species across the basin suggests 388 

that these species have been well dispersed across the basin through evolutionary time, 389 

supporting previous studies that found evidence for widespread dispersal in several common 390 

Amazonian tree lineages34.  391 
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These findings have important implications: If we accept the premise that phylogenetic 392 

diversity is an effective proxy for ecological or indeed functional diversity50–52, the high 393 

phylogenetic similarity among canopy species suggests there is lower functional diversity 394 

within a large proportion of the canopy strata. This low functional diversity may in turn 395 

reduce the resilience of these canopy communities to climate change. Previous studies have 396 

shown that large canopy trees in Amazonia have distinct trait profiles (e.g. hydraulic traits)53, 397 

appear to be particularly affected by drought54, and play a crucial role in Amazonian forest 398 

carbon storage and cycling10. We propose that future research should continue to uncover the 399 

functional diversity and potential vulnerability both within and among lineages of these 400 

canopy hyperdominant species.  401 

We find contrasting phylogenetic patterns in smaller, understory size-classes, which are 402 

widespread across the phylogeny as we predicted. Indeed, at the basin-wide scale, 403 

hyperdominant species in understory size classes are less closely related than expected by 404 

chance (Figure 6). This dispersed phylogenetic pattern is largely due to understory 405 

hyperdominants occurring across the major angiosperm clades (Figure S.5), but may also be 406 

because our list of understory hyperdominant species is composed of both understory 407 

specialist taxa as well as larger-statured species that achieve dominance as juveniles. Hence, 408 

this mixture of life stages and functional strategies across distinct clades is more likely to lead 409 

to a more phylogenetically dispersed assemblage. Nevertheless, our findings highlight that 410 

several characteristic understory genera such as Piper (Piperaceae), Rinorea (Violaceae), and 411 

Miconia (Melastomataceae) contain numerous hyperdominant species, which have not been 412 

recognised by previous studies of large stem (>10 cm) dominance7,12,13.  413 

Our phylogenetic compositional analysis also supports our hypothesis that within understory 414 

strata, hyperdominant species from different regions are distantly related (Figure 4 panel B). 415 
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These results are consistent with limited dispersal and diversification of understory 416 

hyperdominant species at a basin-wide scale over evolutionary timescales, as has been 417 

suggested by others55. Furthermore, the ability to become dominant in the understory of 418 

Amazonian forests is found across a diverse range of lineages, and therefore is relatively 419 

common. Because many of these lineages are distantly related, this suggests that a range of 420 

functional strategies has evolved to achieve hyperdominance in Amazonian understories. 421 

Furthermore, the high phylogenetic distance among understory hyperdominant species is 422 

consistent with the hypothesis that greater environmental niche space in the forest understory 423 

has contributed to higher phylogenetic diversity.  424 

Future Directions 425 

The mechanisms that allow certain species to become hyperdominant remain elusive. 426 

However, our results provide a basis for testing hypotheses related to specific ecological 427 

mechanisms. Future analyses should capitalise on increasingly available functional trait data 428 

to tackle these issues. We expect species that dominate the canopy to be functionally distinct 429 

from those that dominate the understory; therefore, a size-class constrained framework may 430 

help to illuminate the mechanisms that underpin hyperdominance. In particular, a large-scale 431 

assessment of quantitative dispersal traits across a range of species may help to unravel why 432 

hyperdominant species in understory size classes display such different phylogenetic patterns 433 

to those in the canopy.   434 

Previous studies have presented a compelling case for pre- or post- Columbian peoples 435 

increasing the abundance of many hyperdominant species in order to extract products such as  436 

fruits, nuts or building materials56,57. Here, we show that many of these “domesticated” 437 

hyperdominants (e.g. Euterpe precatoria and Theobroma cacao) are in fact only dominant in 438 

smaller size classes. One possible explanation is that it is easier to harvest and manage small 439 
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understory trees and shrubs than large canopy trees; therefore, species that dominate larger 440 

size classes may have been less influenced by human activity than species that dominate 441 

smaller size classes. It is important to note that this is not the case in all instances, and there is 442 

substantial evidence that some large-statured species (e.g. Bertholletia excelsa) were also 443 

managed during pre-Columbian times58. Further investigation into the role of humans in 444 

shaping the composition of Amazon understories may help explain why such distantly related 445 

species have become dominant in different Amazonia regions. For example, paleoecological 446 

records may reveal if different groups of indigenous peoples have propagated different tree 447 

species in different regions.   448 

Conclusions  449 

There is a pressing demand to quantify and monitor the biodiversity of Amazonia in the 450 

coming decades, however, we currently lack the resources necessary to undertake the  451 

‘Linnaean renaissance’ required to fully document the biota of arguably Earth’s most diverse 452 

forests. By identifying those species that are hyperdominant across forest strata, we outline a 453 

size-class based framework for understanding Amazonian forests, irrespective of strata or 454 

location. This framework has revealed that species dominating either the canopy or 455 

understories of Amazonian forests not only are taxonomically distinct but also represent 456 

different phylogenetic patterns. Species belonging to a range of phylogenetically dispersed 457 

lineages have become hyperdominant in small size classes, whereas species that are 458 

hyperdominant in large size-classes belong to a few specific lineages.   459 
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 504 

     505 

  506 

Figure 1. Map of study area and 1240 floristic inventory plots, represented by coloured 507 

points. Point size corresponds to number of plots at a given location (range 1 - 40 plots). 508 

Point colour refers to the plot size and diameter cut-off: 1. Red points: small plots < 1 ha and 509 

stems ≥ 2.5 cm; 2. Blue points: large plots > 1ha and stems ≥ 10 cm; 3. Gold points: large 510 

plots >1 ha and stems ≥ 10 cm with nested subplot for small stems ≥ 2.5 cm. Solid white lines 511 

indicate the border of the five sampling regions defined for analyses, dashed white lines show 512 

the further subdivision of sampling regions into 10 sampling zones. Sampling regions have 513 

been labelled as follows: Northwest Amazonia (NW); Southwest Amazonia (SW); Southern 514 

Amazonia (SA); Central Amazonia (CA); Guiana Shield (GS). The shaded area shows the 515 
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area defined as Amazonia based on: 1. Annual precipitation > 1300 mm, 2. Elevation < 1000 516 

m (above sea level), and 3. Forest cover > 70%.    517 
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  518 

Figure 2. The proportion of species that are hyperdominant (i.e. together account for 50% of 519 

individuals) within six size classes across the five Amazonian regions and the basin-wide 520 

‘Amazonia’ dataset (Panel A). The relationship between the proportion of species that are 521 

hyperdominant and total species richness across six size classes (indicated by symbol size) 522 

across the five Amazonian regions and the basin-wide ‘Amazonia’ dataset (Panel B). Dashed 523 

lines show linear regressions based on the five regional data sets (black line; R2 = 0.01, P 524 

=0.26), and the five regional datasets plus the basin-wide ‘Amazonia’ dataset (grey line; R2 = 525 

0.08, P =0.05). In both panels, a lower proportion of hyperdominant species indicates 526 

stronger patterns of dominance. Sampling regions as indicated in Figure 1 are: Northwest 527 

Amazonia (NW); Southwest Amazonia (SW); Southern Amazonia (SA); Central Amazonia 528 

(CA); Guiana Shield (GS).     529 
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484   

485 Figure 3. Two-dimensional histogram showing the number of species that are 

hyperdominant in one to six size classes and across one to five regions. Regions and size 

classes follow the same definitions as in figure 2.   
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 486 

Figure 4. NMDS ordinations showing similarity in composition of hyperdominant species in 487 

terms of: A.) Taxonomic species similarity (Jaccard index) and B) deep-node-weighted 488 

phylogenetic similarity (community level mean pairwise phylogenetic distance). Sampling 489 

regions have been labelled as follows: Northwest Amazonia (NW); Southwest Amazonia 490 

(SW); Southern Amazonia (SA); Central Amazonia (CA); Guiana Shield (GS).     491 
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492 

Figure 5. Hyperdominant species mapped onto a genus level Amazonian tree phylogeny. All 493 

genera with one or more hyperdominant species have been highlighted. Genera with three or 494 

more hyperdominant species have been labelled. Colour corresponds to the size class within  495 

which species belonging to that genus are most frequently hyperdominant.    496 

  497 
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 498 

Figure 6. Divergence of mean pairwise phylogenetic distance (MPD) from null models for 499 

each hyperdominant community (Panel A). Positive numbers indicate greater MPD than 500 

expected by chance (i.e. species are more distantly related than expected by chance.). 501 

Negative numbers indicate lower MPD than expected by chance (i.e. species are more closely 502 

related than expected by chance). Filled symbols indicate hyperdominant communities that 503 

were outside the 95 % confidence interval of the null distribution. Panel B shows the null 504 

distributions and observed MPD for entire Amazonia hyperdominant communities. Regional 505 

null distributions are provided in Figure S4.  506 

  507 
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Methods  508 

Floristic data  509 

Floristic data came from 1240 forest inventory plots, distributed across the Amazon basin 510 

(Fig. 1). The plot data fall into two broad categories: Firstly, the RedGentry network 511 

consisted of 1027 small forest plots (typically 0.1ha but ranging from 0.04- 0.25 ha) within 512 

which all stems with a diameter at 1.3 m in height (dbh) greater than 2.5 cm were measured 513 

and identified. Secondly, 520 larger forest plots (typically 1 ha but ranging from 0.5 to 9 ha) 514 

from the RAINFOR and ATDN networks were used. Within these larger plots all stems with 515 

a dbh greater than 10 cm were measured and identified. Many of these plots are curated and 516 

stored within ForestPlots.net, a cyber-infrastructure initiative that unites plot records and their 517 

contributing scientists from the world’s tropical forests. 518 

The RedGentry plot data came from a range of sources and therefore included a range of plot 519 

sizes and sampling protocols. Most plots were 0.1 ha in size and consisted of 10 transects of 2 520 

X 50 m arranged systematically around a single transect baseline following the ‘Gentry 521 

protocol’46. However, 307 plots were subplots nested in within larger 1 ha inventory plots 522 

(Fig. 1). The majority of these nested 0.1 ha plots were part of the PPBio network. 523 

Taxonomic standardization   524 

It was not possible to standardise morphospecies across datasets as plots were installed by 525 

many different botanical teams at different times, often without accompanying herbarium 526 

vouchers. Therefore, all individuals that were not identified to species level were excluded 527 

from all subsequent analysis. These exclusions lead to a substantial loss of individuals (mean 528 

21 % of individuals per plot, Figure S.7) and were phylogenetically biased, i.e. some families 529 

had a higher degree of taxonomic uncertainty than others. Nevertheless, this approach renders 530 
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our analysis comparable to other landscape analyses conducted on larger stems in this and 531 

other regions.  532 

    533 

Species exclusions  534 

Species names were checked for synonymy and spelling mistakes using the taxonomic names 535 

resolution service (TNRS) using the R package taxize59. Any species that were not recognised 536 

in the automated process were checked manually for spelling mistakes. Identifications that 537 

could not be easily assigned to a species were considered unidentified morphospecies and 538 

were removed from further analysis. Finally, our list of legitimate species names was cross- 539 

checked against the most current published checklists60,61. Species that did not occur on this 540 

Amazon checklist (887 species) were checked manually against collection records in the 541 

Tropicos database62. 39 of these were confirmed to be illegitimate Amazonian species 542 

because they have ranges either outside of our region (i.e. on another continent). A further 543 

579 species that were described as either epiphytes, lianas, herbs, or ferns were also excluded 544 

from our analysis. These lifeforms were included in some plot datasets and excluded from 545 

others. As individual datasets are normally geographically clustered, including them would 546 

likely lead to spatially biased species abundance estimates. A further 47 species were 547 

excluded because there was no recorded collection since their descriptions, we considered 548 

these individuals to be wrongly identified.   549 

Species inclusions  550 

We included 180 species in our analysis that had been excluded from previous analyses or 551 

checklists. The majority of these inclusions were small stemmed species that had previously 552 

been excluded for being shrubs or treelets. We considered these definitions to be subjective. 553 

37 of these included species have previously been considered illegitimate because they occur 554 

primarily in Savanna or seasonally dry habitats. However, because several of our plots were 555 
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located close to boundaries between ecosystem types, and many species are shared across 556 

these boundaries (not necessarily in their optimum habitat), we included these non-core 557 

rainforest species in our dataset.   558 

Defining Amazonia  559 

To ensure that our analysis included only plots located in lowland Amazonia and did not 560 

incorporate plots in marginal seasonally dry or montane environments, it was necessary to 561 

define our study area. We defined lowland Amazonia using four remotely sensed criteria: 1. 562 

Watersheds were estimated using the hydrosheds data layer63, in addition to the Amazon 563 

basin; we also included eastern branches of the Orinoco and all watersheds to the east of that 564 

mark in the Guiana Shield. 2. Elevation was measured using the global SRTM digital 565 

elevation model64, lowlands were considered to be land area below 1000m elevation 566 

following Cardoso et al. (2017)60. 3. Precipitation was estimated using the CHIRPS annual 567 

mean rainfall data65, and a minimum mean annual precipitation value of 1300 mm year-1 was 568 

used to define moist forests following Cardoso et al. (2017)60. 4. Tree cover was estimated 569 

using the 2010 global forest cover map66, and all pixels with > 70 % forest cover were 570 

included. The four layers were overlaid, and the intersecting area was used to define 571 

Amazonia. This final layer was then sieved and filtered to reduce speckle, which was 572 

primarily driven by the complex patterns of deforestation along the southeastern border. All 573 

geospatial analysis was conducted using QGIS software67.   574 

Spatial standardisation  575 

Many species (27 %) occurred fewer than five times across the plot network. Therefore, we 576 

did not attempt to generate basin-wide population estimates for most species as other studies 577 

have done7. Instead, we used only the empirical data from plots to estimate those species 578 
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likely to be hyperdominant at basin-wide scales, under the assumption that this plot network 579 

is reasonably representative of abundances of the most common species.   580 

Plots are not distributed evenly across Amazonia, but instead are clustered in space, for 581 

example, there are many more plots in western Amazonia than in Southern or Eastern 582 

Amazonia. Furthermore, plots varied in size and therefore so did the number of individuals 583 

per plot. To account for these biases, and to attempt to ensure the Amazonian flora was 584 

sampled as evenly as possible, we used a spatially-stratified bootstrap resampling approach. 585 

All sampling procedures were performed in the statistical language R using the tidyverse 586 

packages dplyr, tidyr, and purrr68–70.   587 

This approach consisted of the following steps:  588 

1.) Greater Amazonia (as defined above) was divided into 5 regions roughly following 589 

previously defined boundaries7,49. Each region was then split roughly in half to generate 10 590 

total sampling zones that were broadly similar in area (Area varied from 210,000 to 1081,000 591 

km2). Each sampling zone contained at least 40 individual plots (at least 20 small plots and at 592 

least 10 large plots).  593 

2.) The entire dataset was then divided into six strata-specific datasets. This was done by 594 

stratifying the data by dbh into six size classes (2.5 – 5 cm, 5 – 10 cm, 10 – 20 cm, 20 – 30 595 

cm, 30 – 50 cm, >50 cm). Diameter was used as a proxy for tree height because tree height 596 

was not measured in most plots, and because of the strong allometric relationship between 597 

diameter and height.  598 

3.) 20 small plots or large plots with nested subplots and five large plots were sampled 599 

from each sampling zone at random without replacement. This step ensured spatially even 600 

sampling across the basin, and the five additional large plots ensured a reasonable number of 601 

large individuals were sampled.  602 
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4.) From each of these 25 plots a standard number of individuals (50% of the median 603 

individuals per plot per size class) were sampled with replacement, ensuring an even number 604 

of individuals was sampled for each plot.  605 

5.) These standardised samples from each plot were then assembled into a single species 606 

by plot matrix.  607 

6.) Steps 2 and 3 were repeated 106 times, generating 106 estimates of abundance for each 608 

species across the basin.   609 

7.) The mean and standard deviation of abundance for each species was calculated across 610 

the 106 estimates of abundance.   611 

8.) Hyperdominant species were then defined as those species that together account for 612 

50 % of the mean total abundance of all individuals within each size class across all 613 

iterations.  614 

To identify regionally dominant species, steps two-seven were repeated for each of the five 615 

predefined regions individually.   616 

Phylogenetic analyses  617 

To understand where hyperdominant species are situated across the Amazonian phylogeny, 618 

we used a published genus-level molecular phylogeny for Amazonian tree species37,38. A 619 

genus-level phylogeny was used because a species-level molecular phylogeny for the full 620 

Amazonian flora does not yet exist. Genera occurring in our lists of Amazon–wide 621 

hyperdominant species were mapped onto the phylogeny, which was then pruned to remove 622 

taxa not occurring in our dataset. The final phylogenetic tree contained 646 genus tips. We 623 

then plotted the phylogeny for all genera occurring in our dataset using the R package 624 

ggtree71.  625 
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The tips of genera that contained hyperdominant species were coloured to highlight their 626 

location. Tip colours corresponded to a continuous variable that was the mean size class for 627 

hyperdominant species that were in the given genus. Genus labels were given to all genera 628 

that contained three or more hyperdominant species.   629 

We used the mean pairwise phylogenetic distance (MPD) metric and a null modelling 630 

approach to test if hyperdominant species are more closely related to one another than would 631 

be expected if hyperdominance were distributed across the phylogeny at random 51.72. 632 

Because a species-level molecular phylogeny has not been developed across Amazonian plant 633 

taxa, we first added species tips with a uniform branch length (0.1) to all tree genera. This 634 

approach allowed us to make species-level comparisons using a genus level phylogeny, while 635 

minimizing the assumptions made about within-genus phylogenetic structure. We then 636 

calculated MPD among hyperdominant species for each hyperdominant community, and 637 

compared this observed MPD to a null distribution of expected MPD if we sampled an 638 

equivalent number of species at random across a phylogeny with an equivalent species pool72. 639 

Where the observed MPD fell outside two standard deviations of the null distribution, that 640 

hyperdominant community was considered to be significantly more clustered (lower MPD) or 641 

significantly more dispersed (higher MPD) than we expect by chance. All phylogenetic 642 

analysis was conducted in R, using packages phylomeasures, phytools, and caper72–74.  643 

MPD is known to be influenced by the extent to which species are divided among the three 644 

major angiosperm clades (Magnoliids, Monocots and Eudicots)75. Large stemmed Amazonian 645 

tree species are predominantly found within the Eudicots, while small stemmed species are 646 

found across the three clades. These deep-clade distributions are therefore likely to increase 647 

phylogenetic clustering within the large-stemmed species and increase phylogenetic 648 

overdispersion within small stemmed species. In part we account for this in measurement of 649 

MPD as we remove genera from the tree that do not occur in the size class/region for which 650 
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we are measuring MPD. However, to explore the effect of this deep-clade diversity further, 651 

we repeated our MPD analysis within Eudicots only (Figure S.5). This analysis demonstrates 652 

that the overall patterns of increased clustering in larger size classes is maintained within 653 

eudicots. The analysis also shows that the phylogenetic dispersion found within small-654 

stemmed hyperdominant species is due to these understory hyperdominant species occurring 655 

across these deep phylogenetic nodes.  656 

Compositional analyses  657 

To understand how the composition of hyperdominant species varied across size classes and 658 

regions we used a multivariate statistical approach. Specifically, we used the Jaccard index as 659 

a metric of how similar or different the composition of hyperdominant species was among the 660 

36 communities of a given size classes within a given region, e.g. northwest amazon - 2.5-5 661 

cm size class. For clarity, these regional and size class specific groups are hereafter referred  662 

to as hyperdominant communities. The Jaccard distances were generated using with the R 663 

package vegan76.  664 

We expanded these compositional analyses not only to consider how taxonomic composition 665 

varied among hyperdominant communities, but also, to quantify how phylogenetically similar 666 

hyperdominant communities were among size classes and regions. To do this we again used a 667 

multivariate statistical approach, however, this time using two metrics of phylogenetic beta 668 

diversity. Both phylo-beta diversity metrics were calculated at genus rather than species level 669 

as we used the genus-level phylogeny. To account for the fact that some genera contain 670 

several hyperdominant species, we used the number of hyperdominant species per genus for 671 

each hyperdominant community per size class as our input community matrix.   672 

The first metric that we used was the abundance weighted MPD among hyperdominant 673 

communities, which provides a deep/basal node weighted assessment of phylogenetic beta 674 
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diversity50. The second metric of phylogenetic beta diversity that we used was the generalized 675 

version the unifrac method77, calculated with the R package GUniFrac78. We used an α value 676 

of 0.5, meaning that we moderately weighted genera by the number of hyperdominant species 677 

that they contained in that site/size class. The unifrac metric provides a stable tip-weighted 678 

assessment of phylogenetic beta-diversity.  679 

Because the phylogenetic analysis was conducted using a genus-level phylogeny, we do not 680 

account for any within genus phylogenetic structure that could affect these metrics. However, 681 

any within-genus structure will have little effect on patterns of MPD, as this metric is heavily 682 

weighted towards deep-node differences among communities50. The tip-weighted unifrac 683 

method is likely to be more heavily influenced by the missing within-genus structure, 684 

therefore these results are only presented in the supplementary information.  685 

To reduce the dimensionally of this multivariate data and visualize the taxonomic and 686 

phylogenetic similarities among hyperdominant communities we used Non-metric 687 

multidimensional scaling (NMDS). NMDS analyses were run for at least 50 iterations and 688 

until a stable solution was reached (stress < 0.2). Each NMDS was optimized over three 689 

dimensions and displayed in an ordination plots. All NMDS ordinations were  690 

performed in the R package vegan76.    691 

  692 
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