333 research outputs found

    Quantification of the performance of chaotic micromixers on the basis of finite time Lyapunov exponents

    Get PDF
    Chaotic micromixers such as the staggered herringbone mixer developed by Stroock et al. allow efficient mixing of fluids even at low Reynolds number by repeated stretching and folding of the fluid interfaces. The ability of the fluid to mix well depends on the rate at which "chaotic advection" occurs in the mixer. An optimization of mixer geometries is a non trivial task which is often performed by time consuming and expensive trial and error experiments. In this paper an algorithm is presented that applies the concept of finite-time Lyapunov exponents to obtain a quantitative measure of the chaotic advection of the flow and hence the performance of micromixers. By performing lattice Boltzmann simulations of the flow inside a mixer geometry, introducing massless and non-interacting tracer particles and following their trajectories the finite time Lyapunov exponents can be calculated. The applicability of the method is demonstrated by a comparison of the improved geometrical structure of the staggered herringbone mixer with available literature data.Comment: 9 pages, 8 figure

    Magnitude of potentially inappropriate prescribing in Germany among older patients with generalized anxiety disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several medications commonly used to treat generalized anxiety disorder (GAD) have been designated "potentially inappropriate" for use in patients aged ≥65 years because their risks may outweigh their potential benefits. The actual extent of use of these agents in clinical practice is unknown, however.</p> <p>Methods</p> <p>Using a database with information from encounters with general practitioners (GP) in Germany, we identified all patients, aged ≥65 years, with any GP office visits or dispensed prescriptions with a diagnosis of GAD (ICD-10 diagnosis code F41.1) between 10/1/2003 and 9/30/2004 ("GAD patients"). Among GAD-related medications (including benzodiazepines, tricyclic antidepressants [TCAs], selective serotonin reuptake inhibitors, venlafaxine, hydroxyzine, buspirone, pregabalin, and trifluoperazine), long-acting benzodiazepines, selected short-acting benzodiazepines at relatively high dosages, selected TCAs, and hydroxyzine were designated "potentially inappropriate" for use in patients aged ≥ 65 years, based on published criteria.</p> <p>Results</p> <p>A total of 975 elderly patients with GAD were identified. Mean age was 75 years, and 72% were women; 29% had diagnoses of comorbid depression. Forty percent of study subjects received potentially inappropriate agents – most commonly, bromazepam (10% of all subjects), diazepam (9%), doxepin (7%), amitriptyline (5%), and lorazepam (5%). Twenty-three percent of study subjects received long-acting benzodiazepines, 10% received short-acting benzodiazepines at relatively high doses, and 12% received TCAs designated as potentially inappropriate.</p> <p>Conclusion</p> <p>GPs in Germany often prescribe medications that have been designated as potentially inappropriate to their elderly patients with GAD – especially those with comorbid depressive disorders. Further research is needed to ascertain whether there are specific subgoups of elderly patients with GAD for whom the benefits of these medications outweigh their risks.</p

    Promoter Nucleosome Organization Shapes the Evolution of Gene Expression

    Get PDF
    Understanding why genes evolve at different rates is fundamental to evolutionary thinking. In species of the budding yeast, the rate at which genes diverge in expression correlates with the organization of their promoter nucleosomes: genes lacking a nucleosome-free region (denoted OPN for “Occupied Proximal Nucleosomes”) vary widely between the species, while the expression of those containing NFR (denoted DPN for “Depleted Proximal Nucleosomes”) remains largely conserved. To examine if early evolutionary dynamics contributes to this difference in divergence, we artificially selected for high expression of GFP–fused proteins. Surprisingly, selection was equally successful for OPN and DPN genes, with ∼80% of genes in each group stably increasing in expression by a similar amount. Notably, the two groups adapted by distinct mechanisms: DPN–selected strains duplicated large genomic regions, while OPN–selected strains favored trans mutations not involving duplications. When selection was removed, DPN (but not OPN) genes reverted rapidly to wild-type expression levels, consistent with their lower diversity between species. Our results suggest that promoter organization constrains the early evolutionary dynamics and in this way biases the path of long-term evolution

    Experimental investigations of ambiguity: the case of most

    Get PDF
    In the study of natural language quantification, much recent attention has been devoted to the investigation of verification procedures associated with the proportional quantifier most. The aim of these studies is to go beyond the traditional characterization of the semantics of most, which is confined to explicating its truth-functional and presuppositional content as well as its combinatorial properties, as these aspects underdetermine the correct analysis of most. The present paper contributes to this effort by presenting new experimental evidence in support of a decompositional analysis of most according to which it is a superlative construction built from a gradable predicate many or much and the superlative operator -est (Hackl, in Nat Lang Semant 17:63–98, 2009). Our evidence comes in the form of verification profiles for sentences like Most of the dots are blue which, we argue, reflect the existence of a superlative reading of most. This notably contrasts with Lidz et al.’s (Nat Lang Semant 19:227–256, 2011) results. To reconcile the two sets of data, we argue, it is necessary to take important differences in task demands into account, which impose limits on the conclusions that can be drawn from these studies

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Get PDF
    BACKGROUND: Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. METHODS: We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest) of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. RESULTS: Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. CONCLUSIONS: We propose to combine the computational prediction of alternative splice isoforms with experimental validation for efficient delineation of an accurate set of tissue-specific transcripts

    Trans-Epithelial Immune Cell Transfer during Suckling Modulates Delayed-Type Hypersensitivity in Recipients as a Function of Gender

    Get PDF
    INTRODUCTION: Breast feeding has long term effects on the developing immune system which outlive passive immunization of the neonate. We have investigated the transfer of milk immune cells and examined the result of transfer once the recipients were adult. METHODS: Non-transgenic mouse pups were foster-nursed by green fluorescent protein (GFP) transgenic dams for 3 weeks and the fate of GFP+ cells was followed by FACS analysis, immunohistochemistry and RT-PCR for GFP and appropriate immune cell markers. Pups suckled by non-transgenic dams served as controls. RESULTS: Despite a preponderance of B cells and macrophages in the stomach contents of the pups, most cells undergoing trans-epithelial migration derived from the 3-4% of milk cells positive for T lymphocyte markers. These cells homed to the spleen and thymus, with maximal accumulation at 3-4 weeks. By sensitizing dams with an antigen which elicits a T cell-mediated delayed-type-hypersensitivity (DTH) response, we determined that nursing by a sensitized dam (compared to a non-sensitized dam) amplified a subsequent DTH response in females and yet suppressed one in males. DISCUSSION: These results suggest that clinical evaluation weighing the pros and cons of nursing male versus female children by mothers with genetically-linked hypersensitivity diseases, such as celiac disease and eczema, or those in regions of the world with endemic DTH-eliciting diseases, such as tuberculosis, may be warranted

    Widespread Epigenetic Abnormalities Suggest a Broad DNA Methylation Erasure Defect in Abnormal Human Sperm

    Get PDF
    Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis.We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm.This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line
    corecore