280 research outputs found

    Economic evidence for the prevention and treatment of atopic eczema: a protocol for a systematic review

    Get PDF
    Background: Eczema, synonymous with atopic eczema or atopic dermatitis, is a chronic skin disease that has a similar impact on health-related quality of life as other chronic diseases. The proposed research aims to provide a comprehensive systematic assessment of the economic evidence base available to inform economic modelling and decision making on interventions to prevent and treat eczema at any stage of the life course. Whilst the Global Resource of Eczema Trials (GREAT) database collects together the effectiveness evidence for eczema there is currently no such systematic resource on the economics of eczema. It is important to gain an overview of the current state of the art of economic methods in the field of eczema in order to strengthen the economic evidence base further. Methods/design: The proposed study is a systematic review of the economic evidence surrounding interventions for the prevention and treatment of eczema. Relevant search terms will be used to search MEDLINE, EMBASE, Database of Abstracts of Reviews of Effects, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, NHS Economic Evaluation Database, Health Technology Assessment, Cumulative Index to Nursing and Allied Health Literature, Econ Lit, Scopus, Cost-Effectiveness Analysis Registry and Web of Science in order to identify relevant evidence. To be eligible for inclusion studies will be primary empirical studies evaluating the cost, utility or full economic evaluation of interventions for preventing or treating eczema. Two reviewers will independently assess studies for eligibility and perform data abstraction. Evidence tables will be produced presenting details of study characteristics, costing methods, outcome methods and quality assessment. The methodological quality of studies will be assessed using accepted checklists. Discussion: The systematic review is being undertaken to identify the type of economic evidence available, summarise the results of the available economic evidence and critically appraise the quality of economic evidence currently available to inform future economic modelling and resource allocation decisions about interventions to prevent or treat eczema. We aim to use the review to offer guidance about how to gather economic evidence in studies of eczema and/or what further research is necessary in order to inform this

    A Freeze Frame View of Vesicular Stomatitis Virus Transcription Defines a Minimal Length of RNA for 5′ Processing

    Get PDF
    The RNA synthesis machinery of vesicular stomatitis virus (VSV) comprises the genomic RNA encapsidated by the viral nucleocapsid protein (N) and associated with the RNA dependent RNA polymerase, the viral components of which are a large protein (L) and an accessory phosphoprotein (P). The 241 kDa L protein contains all the enzymatic activities necessary for synthesis of the viral mRNAs, including capping, cap methylation and polyadenylation. Those RNA processing reactions are intimately coordinated with nucleotide polymerization such that failure to cap results in termination of transcription and failure to methylate can result in hyper polyadenylation. The mRNA processing reactions thus serve as a critical check point in viral RNA synthesis which may control the synthesis of incorrectly modified RNAs. Here, we report the length at which viral transcripts first gain access to the capping machinery during synthesis. By reconstitution of transcription in vitro with highly purified recombinant polymerase and engineered templates in which we omitted sites for incorporation of UTP, we found that transcripts that were 30-nucleotides in length were uncapped, whereas those that were 31-nucleotides in length contained a cap structure. The minimal RNA length required for mRNA cap addition was also sufficient for methylation since the 31-nucleotide long transcripts were methylated at both ribose-2′-O and guanine-N-7 positions. This work provides insights into the spatial relationship between the active sites for the RNA dependent RNA polymerase and polyribonucleotidyltransferase responsible for capping of the viral RNA. We combine the present findings with our recently described electron microscopic structure of the VSV polymerase and propose a model of how the spatial arrangement of the capping activities of L may influence nucleotide polymerization

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Turnover of Carbohydrate-Rich Vegetal Matter During Microaerobic Composting and After Amendment in Soil

    Get PDF
    We propose that microaerobic composting (MC) can be used to decompose vegetal matter with a short turnover time and large carbon (C) recycling potential. We used a novel method for measuring the degree of fragmentation of water-insoluble acid-soluble (WIAS) polysaccharides as a proxy in tracking their relative degree of degradation (i.e., fragmentation endpoint index). Oak leaves and food scrap processed by MC reached a fragmentation end point within 2 weeks. After amending the MC products into soil, the half-life of the polysaccharide residues was ~6–7 times longer (~100–110 days) than that measured during MC. The main products given up during MC were volatile organic acids (VOAs), alcohols and soluble carbohydrates in the compost tea, and CO2. These products accounted for about 2% of the initial carbon in the feedstock. Very small amounts of VOAs, particularly butyric acid, were formed in the amended soil. Based on a residence time of materials in fermentors of 2 weeks, a ~100-m3 capacity MC facility could process 2,000–4,000 metric tons of vegetable matter amended in ten hectares of arable land per year

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Integrated Mapping of Neglected Tropical Diseases: Epidemiological Findings and Control Implications for Northern Bahr-el-Ghazal State, Southern Sudan

    Get PDF
    Integrated control of neglected tropical diseases (NTDs) is being scaled up in a number of developing countries, because it is thought to be more cost-effective than stand-alone control programmes. Under this approach, treatments for onchocerciasis, lymphatic filariasis (LF), schistosomiasis, soil-transmitted helminth (STH) infection, and trachoma are administered through the same delivery structure and at about the same time. A pre-requisite for implementation of integrated NTD control is information on where the targeted diseases are endemic and to what extent they overlap. This information is generated through surveys that can be labour-intensive and expensive. In Southern Sudan, all of the above diseases except onchocerciasis require further mapping before a comprehensive integrated NTD control programme can be implemented. To determine where treatment for which disease is required, integrated surveys were conducted for schistosomiasis, STH infection, LF, and loiasis, throughout one of ten states of the country. Our results show that treatment is only required for urinary schistosomiasis and STH in a few, yet separate, geographical area. This illustrates the importance of investing in disease mapping to minimize overall programme costs by being able to target interventions. Integration of survey methodologies for the above disease was practical and efficient, and minimized the effort required to collect these data

    When Subterranean Termites Challenge the Rules of Fungal Epizootics

    Get PDF
    Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle
    corecore