157 research outputs found

    Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape

    Get PDF
    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development

    Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection

    Get PDF
    A new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs) is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm) were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs

    Influence of elevated-CRP level-related polymorphisms in non-rheumatic Caucasians on the risk of subclinical atherosclerosis and cardiovascular disease in rheumatoid arthritis

    Get PDF
    Association between elevated C-reactive protein (CRP) serum levels and subclinical atherosclerosis and cardiovascular (CV) events was described in rheumatoid arthritis (RA). CRP, HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 exert an influence on elevated CRP serum levels in non-rheumatic Caucasians. Consequently, we evaluated the potential role of these genes in the development of CV events and subclinical atherosclerosis in RA patients. Three tag CRP polymorphisms and HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 were genotyped in 2,313 Spanish patients by TaqMan. Subclinical atherosclerosis was determined in 1,298 of them by carotid ultrasonography (by assessment of carotid intima-media thickness-cIMT-and presence/absence of carotid plaques). CRP serum levels at diagnosis and at the time of carotid ultrasonography were measured in 1,662 and 1,193 patients, respectively, by immunoturbidimetry. Interestingly, a relationship between CRP and CRP serum levels at diagnosis and at the time of the carotid ultrasonography was disclosed. However, no statistically significant differences were found when CRP, HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 were evaluated according to the presence/absence of CV events, carotid plaques and cIMT after adjustment. Our results do not confirm an association between these genes and CV disease in RA

    Building the genomic nation: ‘Homo Brasilis’ and the ‘Genoma Mexicano’ in comparative cultural perspective

    Get PDF
    This article explores the relationship between genetic research, nationalism and the construction of collective social identities in Latin America. It makes a comparative analysis of two research projects – the ‘Genoma Mexicano’ and the ‘Homo Brasilis’ – both of which sought to establish national and genetic profiles. Both have reproduced and strengthened the idea of their respective nations of focus, incorporating biological elements into debates on social identities. Also, both have placed the unifying figure of the mestizo/mestiço at the heart of national identity constructions, and in so doing have displaced alternative identity categories, such as those based on race. However, having been developed in different national contexts, these projects have had distinct scientific and social trajectories: in Mexico, the genomic mestizo is mobilized mainly in relation to health, while in Brazil the key arena is that of race. We show the importance of the nation as a frame for mobilizing genetic data in public policy debates, and demonstrate how race comes in and out of focus in different Latin American national contexts of genomic research, while never completely disappearing

    Conservation genetics of the annual hemiparasitic plant Melampyrum sylvaticum (Orobanchaceae) in the UK and Scandinavia

    Get PDF
    Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (F’ST = 0.892) and significantly higher amongst UK populations (F’ST = 0.949) than Scandinavian populations (F’ST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK

    Contrast in Edge Vegetation Structure Modifies the Predation Risk of Natural Ground Nests in an Agricultural Landscape

    Get PDF
    Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height) affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe). As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation). No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland). This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i) that edge effects depend on edge contrast, (ii) that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk

    Turbot reovirus (SMReV) genome encoding a FAST protein with a non-AUG start site

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A virus was isolated from diseased turbot <it>Scophthalmus maximus </it>in China. Biophysical and biochemical assays, electron microscopy, and genome electrophoresis revealed that the virus belonged to the genus <it>Aquareovirus</it>, and was named <it>Scophthalmus maximus </it>reovirus (SMReV). To the best of our knowledge, no complete sequence of an aquareovirus from marine fish has been determined. Therefore, the complete characterization and analysis of the genome of this novel aquareovirus will facilitate further understanding of the taxonomic distribution of aquareovirus species and the molecular mechanism of its pathogenesis.</p> <p>Results</p> <p>The full-length genome sequences of SMReV were determined. It comprises eleven dsRNA segments covering 24,042 base pairs and has the largest S4 genome segment in the sequenced aquareoviruses. Sequence analysis showed that all of the segments contained six conserved nucleotides at the 5' end and five conserved nucleotides at the 3' end (5'-GUUUUA ---- UCAUC-3'). The encoded amino acid sequences share the highest sequence identities with the respective proteins of aquareoviruses in species group <it>Aquareovirus </it>A. Phylogenetic analysis based on the major outer capsid protein VP7 and RNA-dependent RNA polymerase were performed. Members in <it>Aquareovirus </it>were clustered in two groups, one from fresh water fish and the other from marine fish. Furthermore, a fusion associated small transmembrane (FAST) protein NS22, which is translated from a non-AUG start site, was identified in the S7 segment.</p> <p>Conclusions</p> <p>This study has provided the complete genome sequence of a novel isolated aquareovirus from marine fish. Amino acids comparison and phylogenetic analysis suggested that SMReV was a new aquareovirus in the species group <it>Aquareovirus </it>A. Phylogenetic analysis among aquareoviruses revealed that VP7 could be used as a reference to divide the aquareovirus from hosts in fresh water or marine. In addition, a FAST protein with a non-AUG start site was identified, which partially contributed to the cytopathic effect caused by the virus infection. These results provide new insights into the virus-host and virus-environment interactions.</p

    Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection

    Get PDF
    © 2014 Gironès et al. Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.This work was supported by ‘‘Ministerio de Ciencia e Innovación’’ (SAF2010-17833); ‘‘Fondo de Investigaciones Sanitarias’’ (PS09/00538 and PI12/00289); ‘‘Red de Investigación de Centros de Enfermedades Tropicales’’ (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet);‘‘Universidad Autónoma de Madrid’’ and ‘‘Comunidad de Madrid’’ (CC08-UAM/SAL-4440/08); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD-2332) and ‘‘Fundación Ramón Areces’Peer Reviewe
    corecore