214 research outputs found

    Circadian Consequence of Socio-Sexual Interactions in Fruit Flies Drosophila melanogaster

    Get PDF
    In fruit flies Drosophila melanogaster, courtship is an elaborate ritual comprising chasing, dancing and singing by males to lure females for mating. Courtship interactions peak in the night and heterosexual couples display enhanced nighttime activity. What we do not know is if such socio-sexual interactions (SSI) leave long-lasting after-effects on circadian clock(s). Here we report the results of our study aimed at examining the after-effects of SSI (as a result of co-habitation of males and females in groups) between males and females on their circadian locomotor activity rhythm. Males undergo reduction in the evening activity peak and lengthening of circadian period, while females show a decrease in overall activity. Such after-effects, at least in males, require functional circadian clocks during SSI as loss-of-function clock mutants and wild type flies interacting under continuous light (LL), do not display them. Interestingly, males with electrically silenced Pigment Dispersing Factor (PDF)-positive ventral lateral (LNv) clock neurons continue to show SSI mediated reduction in evening activity peak, suggesting that the LNv clock neurons are dispensable for SSI mediated after-effects on locomotor activity rhythm. Such after-effects in females may not be clock-dependent because clock manipulated females with prior exposure to males show decrease in overall activity, more or less similar to rhythmic wild type females. The expression of SSI mediated after-effects requires a functional olfactory system in males because males with compromised olfactory ability do not display them. These results suggest that SSI causes male-specific, long-lasting changes in the circadian clocks of Drosophila, which requires the presence of functional clocks and intact olfactory ability in males

    A pulsating auroral X-ray hot spot on Jupiter

    Get PDF
    Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions(1-3). Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared(4-7) and ultraviolet(8) emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft(9,10). These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62624/1/4151000a.pd

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ΞΌm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    No Evidence for XMRV in German CFS and MS Patients with Fatigue Despite the Ability of the Virus to Infect Human Blood Cells In Vitro

    Get PDF
    BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV), a novel human retrovirus originally identified in prostate cancer tissues, has recently been associated with chronic fatigue syndrome (CFS), a disabling disease of unknown etiology affecting millions of people worldwide. However, several subsequent studies failed to detect the virus in patients suffering from these illnesses or in healthy subjects. Here we report the results of efforts to detect antibody responses and viral sequences in samples from a cohort of German CFS and relapsing remitting multiple sclerosis (MS) patients with fatigue symptoms. METHODOLOGY: Blood samples were taken from a cohort of 39 patients fulfilling the Fukuda/CDC criteria (CFS), from 112 patients with an established MS diagnosis and from 40 healthy donors. Fatigue severity in MS patients was assessed using the Fatigue Severity Scale (FSS). Validated Gag- and Env-ELISA assays were used to screen sera for XMRV antibodies. PHA-activated PBMC were cultured for seven days in the presence of IL-2 and DNA isolated from these cultures as well as from co-cultures of PBMC and highly permissive LNCaP cells was analyzed by nested PCR for the presence of the XMRV gag gene. In addition, PBMC cultures were exposed to 22Rv1-derived XMRV to assess infectivity and virus production. CONCLUSION: None of the screened sera from CFS and MS patients or healthy blood donors tested positive for XMRV specific antibodies and all PBMC (and PBMC plus LNCaP) cultures remained negative for XMRV sequences by nested PCR. These results argue against an association between XMRV infection and CFS and MS in Germany. However, we could confirm that PBMC cultures from healthy donors and from CFS patients can be experimentally infected by XMRV, resulting in the release of low levels of transmittable virus

    Between-group competition elicits within-group cooperation in children

    Get PDF
    Aggressive interactions between groups are frequent in human societies and can bear significant fitness costs and benefits (e.g. death or access to resources). During between-group competitive interactions, more cohesive groups (i.e. groups formed by individuals who cooperate in group defence) should out-perform less cohesive groups, other factors being equal (e.g. group size). The cost/benefit of between-group competition are thought to have driven correlated evolution of traits that favour between-group aggression and within-group cooperation (e.g. parochial altruism). Our aim was to analyse whether the proximate relationship between between-group competition and within-group cooperation is found in 3–10 years old children and the developmental trajectory of such a relationship. We used a large cohort of children (n = 120) and tested whether simulated between-group competition increased within-group cooperation (i.e. how much of a resource children were giving to their group companions) in two experiments. We found greater within-group cooperation when groups of four children were competing with other groups then in the control condition (no between-group competition). Within-group cooperation increased with age. Our study suggests that parochial altruism and in-group/out-group biases emerge early during the course of human development

    Hierarchical chemosensory regulation of male-male social interactions in Drosophila

    Get PDF
    Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The mechanisms by which (z)-7-tricosene induced aggression and suppressed courtship were independent, but both required the gustatory receptor Gr32a. Sensitivity to (z)-7-tricosene was required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but (z)-7-tricosene sensitivity was independent of cVA. (z)-7-tricosene and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male cuticular hydrocarbons was suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote aggression and suppress courtship, and whose influences are dominant to olfactory pheromones that enhance these behaviors

    Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the <it>Drosophila buzzatii </it>cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the <it>D. buzzatii </it>species cluster in order to assess the concordance of CHC differentiation with species divergence.</p> <p>Results</p> <p>Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C<sub>29 </sub>to C<sub>39</sub>, including methyl-branched alkanes, <it>n</it>-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of <it>D. serido </it>suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived <it>period </it>(<it>per</it>) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only <it>per </it>+ inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of <it>D. serido </it>significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal.</p> <p>Conclusions</p> <p>CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species.</p

    Selective Regulation of NR2B by Protein Phosphatase-1 for the Control of the NMDA Receptor in Neuroprotection

    Get PDF
    An imbalance between pro-survival and pro-death pathways in brain cells can lead to neuronal cell death and neurodegeneration. While such imbalance is known to be associated with alterations in glutamatergic and Ca2+ signaling, the underlying mechanisms remain undefined. We identified the protein Ser/Thr phosphatase protein phosphatase-1 (PP1), an enzyme associated with glutamate receptors, as a key trigger of survival pathways that can prevent neuronal death and neurodegeneration in the adult hippocampus. We show that PP1Ξ± overexpression in hippocampal neurons limits NMDA receptor overactivation and Ca2+ overload during an excitotoxic event, while PP1 inhibition favors Ca2+ overload and cell death. The protective effect of PP1 is associated with a selective dephosphorylation on a residue phosphorylated by CaMKIIΞ± on the NMDA receptor subunit NR2B, which promotes pro-survival pathways and associated transcriptional programs. These results reveal a novel contributor to the mechanisms of neuroprotection and underscore the importance of PP1-dependent dephosphorylation in these mechanisms. They provide a new target for the development of potential therapeutic treatment of neurodegeneration

    Antagonistic Regulation of Apoptosis and Differentiation by the Cut Transcription Factor Represents a Tumor-Suppressing Mechanism in Drosophila

    Get PDF
    Apoptosis is essential to prevent oncogenic transformation by triggering self-destruction of harmful cells, including those unable to differentiate. However, the mechanisms linking impaired cell differentiation and apoptosis during development and disease are not well understood. Here we report that the Drosophila transcription factor Cut coordinately controls differentiation and repression of apoptosis via direct regulation of the pro-apoptotic gene reaper. We also demonstrate that this regulatory circuit acts in diverse cell lineages to remove uncommitted precursor cells in status nascendi and thereby interferes with their potential to develop into cancer cells. Consistent with the role of Cut homologues in controlling cell death in vertebrates, we find repression of apoptosis regulators by Cux1 in human cancer cells. Finally, we present evidence that suggests that other lineage-restricted specification factors employ a similar mechanism to put the brakes on the oncogenic process
    • …
    corecore