49 research outputs found

    Clinically Isolated Syndromes Suggestive of Multiple Sclerosis: An Optical Coherence Tomography Study

    Get PDF
    Background: Optical coherence tomography (OCT) is a simple, high-resolution technique to quantify the thickness of retinal nerve fiber layer (RNFL), which provides an indirect measurement of axonal damage in multiple sclerosis (MS). This study aimed to evaluate RNFL thickness in patients at presentation with clinically isolated syndromes (CIS) suggestive of MS. Methodology: This was a cross-sectional study. Twenty-four patients with CIS suggestive of MS (8 optic neuritis [ON], 6 spinal cord syndromes, 5 brainstem symptoms and 5 with sensory and other syndromes) were prospectively studied. The main outcome evaluated was RNFL thickness at CIS onset. Secondary objectives were to study the relationship between RNFL thickness and MRI criteria for disease dissemination in space (DIS) as well as the presence of oligoclonal bands in the cerebrospinal fluid. Principal Findings: Thirteen patients had decreased RNFL thickness in at least one quadrant. Mean RNFL thickness was 101.67±10.72 μm in retrobulbar ON eyes and 96.93±10.54 in unaffected eyes. Three of the 6 patients with myelitis had at least one abnormal quadrant in one of the two eyes. Eight CIS patients fulfilled DIS MRI criteria. The presence of at least one quadrant of an optic nerve with a RNFL thickness at a P<5% cut-off value had a sensitivity of 75% and a specificity of 56% for predicting DIS MRI. Conclusions: The findings from this study show that axonal damage measured by OCT is present in any type of CIS; even in myelitis forms, not only in ON as seen up to now. OCT can detect axonal damage in very early stages of disease and seems to have high sensitivity and moderate specificity for predicting DIS MRI. Studies with prospective long-term follow-up would be needed to establish the prognostic value of baseline OCT finding

    Observational analytic studies in multiple sclerosis: controlling bias through study design and conduct. The Australian Multicentre Study of Environment and Immune Function

    Get PDF
    Rising multiple sclerosis incidence over the last 50 years and geographic patterns of occurrence suggest an environmental role in the causation of this multifactorial disease. Design options for epidemiological studies of environmental causes of multiple sclerosis are limited by the low incidence of the disease, possible diagnostic delay and budgetary constraints. We describe scientific and methodological issues considered in the development of the Australian Multicentre Study of Environment and Immune Function (the Ausimmune Study), which seeks, in particular, to better understand the causes of the well-known MS positive latitudinal gradient. A multicentre, case-control design down the eastern seaboard of Australia allows the recruitment of sufficient cases for adequate study power and provides data on environmental exposures that vary by latitude. Cases are persons with an incident first demyelinating event (rather than prevalent multiple sclerosis), sourced from a population base using a two tier notification system. Controls, matched on sex, age (within two years) and region of residence, are recruited from the general population. Biases common in case-control studies, eg, prevalence-incidence bias, admission-rate bias, non-respondent bias, observer bias and recall bias, as well as confounding have been carefully considered in the study design and conduct of the Ausimmune Study

    Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    Get PDF
    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia

    Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

    Get PDF
    BACKGROUND: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. OBJECTIVE: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. METHODS: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). RESULTS: Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. CONCLUSION: This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients

    A framework for integrated environmental health impact assessment of systemic risks

    Get PDF
    Traditional methods of risk assessment have provided good service in support of policy, mainly in relation to standard setting and regulation of hazardous chemicals or practices. In recent years, however, it has become apparent that many of the risks facing society are systemic in nature – complex risks, set within wider social, economic and environmental contexts. Reflecting this, policy-making too has become more wide-ranging in scope, more collaborative and more precautionary in approach. In order to inform such policies, more integrated methods of assessment are needed. Based on work undertaken in two large EU-funded projects (INTARESE and HEIMTSA), this paper reviews the range of approaches to assessment now in used, proposes a framework for integrated environmental health impact assessment (both as a basis for bringing together and choosing between different methods of assessment, and extending these to more complex problems), and discusses some of the challenges involved in conducting integrated assessments to support policy

    Self-referenced RGB colour imaging of intracellular oxygen

    No full text
    Intracellular oxygen is an important indicator for cell metabolism and respiration. We have designed self-referenced RGB PEBBLEs that enable a simple readout of the intracellular oxygen distribution with conventional wide-field microscopy and a standard RGB digital camera. The RGB PEBBLEs consist of a hydrophobic matrix covered with amino groups on the surface to confer waterdispersibility. Two luminophores are incorporated in a hydrophobic polystyrene matrix that is highly permeable to oxygen. In polystyrene, the dyes are largely protected from quenching or aggregation by cellular components. The dyes have been selected to match the green and the red channel of digital cameras. While the red emission of the oxygen probe is highly sensitive to oxygen with a quenching response of 74%, the green emission of the reference dye is stable under varying oxygen concentrations. Ratiometric images of intracellular oxygen have been acquired that are inherently resistant to fluctuations in absolute signal intensities. As RGB PEBBLEs respond within seconds to changing oxygen concentrations, they are amenable to monitoring fast cellular dynamics. ? The Royal Society of Chemistry 2011
    corecore