4,759 research outputs found

    (E)-4-Chloro-2-{[4-(3,5-dichloro­pyridin-2-yl­oxy)phenyl­imino]­meth­yl}phenol

    Get PDF
    In the title mol­ecule, C18H11Cl3N2O2, the central benzene ring is oriented at 8.44 (12) and 70.57 (11)° with respect to the terminal chloro­phenol and dichloro­pyridine rings, respectively. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif. In the crystal, π–π stacking between parallel pyridine rings is observed [centroid–centroid distance = 3.6561 (14) Å]

    Dynamic path selection along branched faults: Experiments involving sub-Rayleigh and supershear ruptures

    Get PDF
    Building upon previous laboratory earthquake experiments of dynamic shear rupture growth taking place along faults with simple kinks, new and complex fault geometries involving cohesively held fault branches are studied. Asymmetric impact at the specimen boundaries controls the incoming shear ruptures, which are manipulated to propagate at either sub-Rayleigh or supershear velocities. High-speed photography and dynamic photoelasticity are used with a model material, Homalite-100, to monitor incoming and outgoing rupture propagation, acceleration, deceleration, or arrest at the vicinity of the branch location. Differences and similarities of rupture velocity history between cases involving faults with either simple kinks or branches, on the one hand, and sub-Rayleigh and supershear incoming ruptures, on the other, are highlighted and explained. Results of the experiments show a clear general bias toward large branch inclination, smaller branch angles appearing to be overshadowed and suppressed by the stress field associated with the main fault. Of great interest, also, is the sustenance of rupture propagation along a branch by the Mach cone, when the initial rupture is supershear driven. Generally, higher rupture speeds favors larger arrays of branching angles to be triggered. A companion analysis by Templeton et al. (2009) featuring detailed numerical simulations of these experiments provides further insight into the observed phenomena

    Following Nerve Injury Neuregulin-1 Drives Microglial Proliferation and Neuropathic Pain via the MEK/ERK Pathway

    Get PDF
    Following peripheral nerve injury microglia accumulate within the spinal cord and adopt a proinflammatory phenotype a process which contributes to the development of neuropathic pain. We have recently shown that neuregulin-1, a growth factor released following nerve injury, activates erbB 2, 3, and 4 receptors on microglia and stimulates proliferation, survival and chemotaxis of these cells. Here we studied the intracellular signaling pathways downstream of neuregulin-1-erbB activation in microglial cells. We found that neuregulin-1 in vitro induced phosphorylation of ERK1/2 and Akt without activating p38MAPK. Using specific kinase inhibitors we found that the mitogenic effect of neuregulin-1 on microglia was dependant on MEK/ERK1/2 pathway, the chemotactic effect was dependant on PI3K/Akt signaling and survival was dependant on both pathways. Intrathecal treatment with neuregulin-1 was associated with microgliosis and development of mechanical and cold pain related hypersensitivity which was dependant on ERK1/2 phosphorylation in microglia. Spinal nerve ligation results in a robust microgliosis and sustained ERK1/2 phosphorylation within these cells. This pathway is downstream of neuregulin-1/erbB signaling since its blockade resulted in a significant reduction in microglial ERK1/2 phosphorylation. Inhibition of the MEK/ERK1/2 pathway resulted in decreased spinal microgliosis and in reduced mechanical and cold hypersensitivity after peripheral nerve damage. We conclude that neuregulin-1 released after nerve injury activates microglial erbB receptors which consequently stimulates the MEK/ERK1/2 pathway that drives microglial proliferation and contributes to the development of neuropathic pain. © 2011 Wiley-Liss, Inc

    Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo

    Get PDF
    The recent confirmation that at least some gamma-ray bursters (GRBs) are indeed at cosmological distances raises the possibility that observations of these could provide interesting constraints on the fundamental laws of physics. Here we demonstrate that the fine-scale time structure and hard spectra of GRB emissions are very sensitive to the possible dispersion of electromagnetic waves in vacuo with velocity differences \delta v \sim E/E_{\QG}, as suggested in some approaches to quantum gravity. A simple estimate shows that GRB measurements might be sensitive to a dispersion scale EQGE_{QG} comparable to the Planck energy scale EP1019E_{P} \sim 10^{19} GeV, sufficient to test some of these theories, and we outline aspects of an observational programme that could address this goal.Comment: LaTex. 9 pages. Version accepted for publication in Nature. (A few changes to the reference list. Additional comments on the analyticity properties of the dispersion law.

    Contaminants in waste foundry sand and its leachate

    Get PDF
    The environmental characteristics of Waste Foundry Sands (WFS), including chemicals in WFS and its leachate, are essential in understanding the environmental impact, rational disposal and potential development of beneficial applications of this solid industrial waste. This paper presents an assessment of broad-spectrum chemicals (metallic, non-metallic and organic chemicals) in aspects of their statistics (mean, median and the 95th percentile) in dry-weight WFS and WFS leachates based on laboratory measurements of 594 WFS samples from 123 foundry facilities in the USA. Results indicate that WFS is basically not hazardous except a risk associated with WFS from copper-based foundry facilities. Leachability of metallic chemicals varies among investigated WFS. A clear delineation between different leaching protocols is implicated.An Den

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Risk of malnutrition is associated with mental health symptoms in community living elderly men and women: The Tromsø Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little research has been done on the relationship between malnutrition and mental health in community living elderly individuals. In the present study, we aimed to assess the associations between mental health (particularly anxiety and depression) and both the risk of malnutrition and body mass index (BMI, kg/m<sup>2</sup>) in a large sample of elderly men and women from Tromsø, Norway.</p> <p>Methods</p> <p>In a cross-sectional survey, with 1558 men and 1553 women aged 65 to 87 years, the risk of malnutrition was assessed by the Malnutrition Universal Screening Tool ('MUST'), and mental health was measured by the Symptoms Check List 10 (SCL-10). BMI was categorised into six groups (< 20.0, 20.0-22.4, 22.5-24.9, 25.0-27.4, 27.5-29.9, ≥ 30.0 kg/m<sup>2</sup>).</p> <p>Results</p> <p>The risk of malnutrition (combining medium and high risk) was found in 5.6% of the men and 8.6% of the women. Significant mental health symptoms were reported by 3.9% of the men and 9.1% of the women. In a model adjusted for age, marital status, smoking and education, significant mental health symptoms (SCL-10 score ≥ 1.85) were positively associated with the risk of malnutrition (odds ratio 3.9 [95% CI 1.7-8.6] in men and 2.5 [95%CI 1.3-4.9] in women), the association was positive also for subthreshold mental health symptoms. For individuals with BMI < 20.0 the adjusted odds ratio for significant mental health symptoms was 2.0 [95% CI 1.0-4.0].</p> <p>Conclusions</p> <p>Impaired mental health was strongly associated with the risk of malnutrition in community living elderly men and women and this association was also significant for subthreshold mental health symptoms.</p

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore