135 research outputs found

    An Approach to Evaluation of the Effect of Bioremediation on Biological Activity of Environmental Contaminants: Dechlorination of Polychlorinated Biphenyls

    Get PDF
    The effectiveness of bioremediation efforts is assessed traditionally from the loss of the chemical of interest. In some cases, analytical techniques are coupled with evaluation of toxicity to organisms representative of those found in the affected environment or surrogate organisms. Little is known, however, about the effect of remediation of environmental chemicals on potential toxicity to mammalian organisms. We discuss both an approach that employs mammalian cell system bioassays and the criteria for selection of the assays. This approach has been used to evaluate the biological response to mixtures of polychlorinated biphenyls (PCBs) before and after remediation by reductive dechlorination. The dechlorination process used results in accumulation of congeners substituted in only the ortho and para positions and containing fewer chlorines than the starting mixtures. Evaluation of the dechlorinated mixture reveals a loss of biological activity that could be ascribed to coplanar PCBs not containing chlorine in the ortho positions. Conversely, biological activity associated with ortho-substituted PCB congeners is unaffected or increased by remediation. Thus, the results of the bioassays are consistent with the remediation-induced change in the profile of PCB congeners and the known mechanisms of action of PCBs. The results emphasize a need for evaluation of the products of remediation for biological activity in mammalian systems. Furthermore, the approach outlined demonstrates the potential to assess the impact of remediation on a range of biological activities in mammalian cells and thus to estimate positive and negative effects of remediation strategies on toxicity. Future needs in this area of research include assays to evaluate biological effects under conditions of exposure that mimic those found in the environment and models to extrapolate effects to assess risk to people and wildlife

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin

    Dopaminergic Influences on Emotional Decision Making in Euthymic Bipolar Patients

    Get PDF
    We recently reported that the D2/D3 agonist pramipexole may have pro-cognitive effects in euthymic patients with bipolar disorder (BPD); however, the emergence of impulse-control disorders has been documented in Parkinson\u27s disease (PD) after pramipexole treatment. Performance on reward-based tasks is altered in healthy subjects after a single dose of pramipexole, but its potential to induce abnormalities in BPD patients is unknown. We assessed reward-dependent decision making in euthymic BPD patients pre- and post 8 weeks of treatment with pramipexole or placebo by using the Iowa Gambling Task (IGT). The IGT requires subjects to choose among four card decks (two risky and two conservative) and is designed to promote learning to make advantageous (conservative) choices over time. Thirty-four BPD patients completed both assessments (18 placebo and 16 pramipexole). Baseline performance did not differ by treatment group (F = 0.63; p = 0.64); however, at week 8, BPD patients on pramipexole demonstrated a significantly greater tendency to make increasingly high-risk, high-reward choices across the five blocks, whereas the placebo group\u27s pattern was similar to that reported in healthy individuals (treatment x time x block interaction,

    Synaptic Dysbindin-1 Reductions in Schizophrenia Occur in an Isoform-Specific Manner Indicating Their Subsynaptic Location

    Get PDF
    Background: An increasing number of studies report associations between variation in DTNBP1, a top candidate gene in schizophrenia, and both the clinical symptoms of the disorder and its cognitive deficits. DTNBP1 encodes dysbindin-1, reduced levels of which have been found in synaptic fields of schizophrenia cases. This study determined whether such synaptic reductions are isoform-specific. Methodology/Principal Findings: Using Western blotting of tissue fractions, we first determined the synaptic localization of the three major dysbindin-1 isoforms (A, B, and C). All three were concentrated in synaptosomes of multiple brain areas, including auditory association cortices in the posterior half of the superior temporal gyrus (pSTG) and the hippocampal formation (HF). Tests on the subsynaptic tissue fractions revealed that each isoform is predominantly, if not exclusively, associated with synaptic vesicles (dysbindin-1B) or with postsynaptic densities (dysbindin-1A and -1C). Using Western blotting on pSTG (n = 15) and HF (n = 15) synaptosomal fractions from schizophrenia cases and their matched controls, we discovered that synaptic dysbindin-1 is reduced in an isoform-specific manner in schizophrenia without changes in levels of synaptophysin or PSD-95. In pSTG, about 92% of the schizophrenia cases displayed synaptic dysbindin-1A reductions averaging 48% (p = 0.0007) without alterations in other dysbindin-1 isoforms. In the HF, by contrast, schizophrenia cases displayed normal levels of synaptic dysbindin-1A, but 67% showed synaptic reductions in dysbindin-1B averaging 33% (p = 0.0256), while 80% showed synaptic reductions in dysbindin-1C averaging 35% (p = 0.0171). Conclusions/Significance: Given the distinctive subsynaptic localization of dysbindin-1A, -1B, and -1C across brain regions, the observed pSTG reductions in dysbindin-1A are postsynaptic and may promote dendritic spine loss with consequent disruption of auditory information processing, while the noted HF reductions in dysbindin-1B and -1C are both presynaptic and postsynaptic and could promote deficits in spatial working memory

    Derivation of Chondrogenically-Committed Cells from Human Embryonic Cells for Cartilage Tissue Regeneration

    Get PDF
    Background: Heterogeneous and uncontrolled differentiation of human embryonic stem cells (hESCs) in embryoid bodies (EBs) limits the potential use of hESCs for cell-based therapies. More efficient strategies are needed for the commitment and differentiation of hESCs to produce a homogeneous population of specific cell types for tissue regeneration applications. Methodology/Principal Findings: We report here that significant chondrocytic commitment of feeder-free cultured human embryonic stem cells (FF-hESCs), as determined by gene expression and immunostaining analysis, was induced by coculture with primary chondrocytes. Furthermore, a dynamic expression profile of chondrocyte-specific genes was observed during monolayer expansion of the chondrogenically-committed cells. Chondrogenically-committed cells synergistically responded to transforming growth factor-b1 (TGF-b1) and b1-integrin activating antibody by increasing tissue mass in pellet culture. In addition, when encapsulated in hydrogels, these cells formed cartilage tissue both in vitro and in vivo. In contrast, the absence of chondrocyte co-culture did not result in an expandable cell population from FF-hESCs. Conclusions/Significance: The direct chondrocytic commitment of FF-hESCs can be induced by morphogenetic factor

    Mechanism of Neuronal versus Endothelial Cell Uptake of Alzheimer's Disease Amyloid β Protein

    Get PDF
    Alzheimer's disease (AD) is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of β-amyloid (Aβ) proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Aβ proteins due to their inefficient clearance at the blood-brain-barrier (BBB), places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Aβ proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT) mouse brain slices treated with fluorescein labeled Aβ40 (F-Aβ40) demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Aβ proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH) neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Aβ40 or F-Aβ42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Aβ40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Aβ40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Aβ proteins and help explain the vulnerability of cortical and hippocampal neurons to Aβ toxicity

    Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows

    Get PDF
    There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs

    MET and AKT Genetic Influence on Facial Emotion Perception

    Get PDF
    Background: Facial emotion perception is a major social skill, but its molecular signal pathway remains unclear. The MET/ AKT cascade affects neurodevelopment in general populations and face recognition in patients with autism. This study explores the possible role of MET/AKT cascade in facial emotion perception. Methods: One hundred and eighty two unrelated healthy volunteers (82 men and 100 women) were recruited. Four single nucleotide polymorphisms (SNP) of MET (rs2237717, rs41735, rs42336, and rs1858830) and AKT rs1130233 were genotyped and tested for their effects on facial emotion perception. Facial emotion perception was assessed by the face task of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Thorough neurocognitive functions were also assessed. Results: Regarding MET rs2237717, individuals with the CT genotype performed better in facial emotion perception than those with TT (p = 0.016 by ANOVA, 0.018 by general linear regression model [GLM] to control for age, gender, and education duration), and showed no difference with those with CC. Carriers with the most common MET CGA haplotype (frequency = 50.5%) performed better than non-carriers of CGA in facial emotion perception (p = 0.018, df = 1, F = 5.69, p = 0.009 by GLM). In MET rs2237717/AKT rs1130233 interaction, the C carrier/G carrier group showed better facial emotion perception than those with the TT/AA genotype (p = 0.035 by ANOVA, 0.015 by GLM), even when neurocognitive functions were controlled (p = 0.046 by GLM)

    Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Correction Volume: 10, Article Number: 2068 DOI: 10.1038/s41467-019-10160-w WOS:000466339700001General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P <5 x 10(-8)) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.Peer reviewe

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
    corecore