88 research outputs found

    The effect of hypertensive disorders in pregnancy on small for gestational age and stillbirth: a population based study

    Get PDF
    BACKGROUND: Hypertensive disorders in pregnancy are leading causes of maternal, fetal and neonatal morbidity and mortality worldwide. However, studies attempting to quantify the effect of hypertension on adverse perinatal outcomes have been mostly conducted in tertiary centres. This population-based study explored the frequency of hypertensive disorders in pregnancy and the associated increase in small for gestational age (SGA) and stillbirth. METHODS: We used information on all pregnant women and births, in the Canadian province of Nova Scotia, between 1988 and 2000. Pregnancies were excluded if delivery occurred < 20 weeks, if birthweight was < 500 grams, if there was a high-order multiple pregnancy (greater than twin gestation), or a major fetal anomaly. RESULTS: The study population included 135,466 pregnancies. Of these, 7.7% had mild pregnancy-induced hypertension (PIH), 1.3% had severe PIH, 0.2% had HELLP (hemolysis, elevated liver enzymes, low platelets), 0.02% had eclampsia, 0.6% had chronic hypertension, and 0.4% had chronic hypertension with superimposed PIH. Women with any hypertension in pregnancy were 1.6 (95% CI 1.5–1.6) times more likely to have a live birth with SGA and 1.4 (95% CI 1.1–1.8) times more likely to have a stillbirth as compared with normotensive women. Adjusted analyses showed that women with gestational hypertension without proteinuria (mild PIH) and with proteinuria (severe PIH, HELLP, or eclampsia) were more likely to have infants with SGA (RR 1.5, 95% CI 1.4–1.6 and RR 3.2, 95% CI 2.8–3.6, respectively). Women with pre-existing hypertension were also more likely to give birth to an infant with SGA (RR 2.5, 95% CI 2.2–3.0) or to have a stillbirth (RR 3.2, 95% CI 1.9–5.4). CONCLUSIONS: This large, population-based study confirms and quantifies the magnitude of the excess risk of small for gestational age and stillbirth among births to women with hypertensive disease in pregnancy

    Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies

    Get PDF
    The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore