16 research outputs found

    G1 checkpoint protein and p53 abnormalities occur in most invasive transitional cell carcinomas of the urinary bladder

    Get PDF
    The G1 cell cycle checkpoint regulates entry into S phase for normal cells. Components of the G1 checkpoint, including retinoblastoma (Rb) protein, cyclin D1 and p16INK4a, are commonly altered in human malignancies, abrogating cell cycle control. Using immunohistochemistry, we examined 79 invasive transitional cell carcinomas of the urinary bladder treated by cystectomy, for loss of Rb or p16INK4a protein and for cyclin D1 overexpression. As p53 is also involved in cell cycle control, its expression was studied as well. Rb protein loss occurred in 23/79 cases (29%); it was inversely correlated with loss of p16INK4a, which occurred in 15/79 cases (19%). One biphenotypic case, with Rb+p16– and Rb-p16+ areas, was identified as well. Cyclin D1 was overexpressed in 21/79 carcinomas (27%), all of which retained Rb protein. Fifty of 79 tumours (63%) showed aberrant accumulation of p53 protein; p53 staining did not correlate with Rb, p16INK4a, or cyclin D1 status. Overall, 70% of bladder carcinomas showed abnormalities in one or more of the intrinsic proteins of the G1 checkpoint (Rb, p16INK4a and cyclin D1). Only 15% of all bladder carcinomas (12/79) showed a normal phenotype for all four proteins. In a multivariate survival analysis, cyclin D1 overexpression was linked to less aggressive disease and relatively favourable outcome. In our series, Rb, p16INK4a and p53 status did not reach statistical significance as prognostic factors. In conclusion, G1 restriction point defects can be identified in the majority of bladder carcinomas. Our findings support the hypothesis that cyclin D1 and p16INK4a can cooperate to dysregulate the cell cycle, but that loss of Rb protein abolishes the G1 checkpoint completely, removing any selective advantage for cells that alter additional cell cycle proteins. © 1999 Cancer Research Campaig

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Chapter 15 - The psychopharmacology of saffron, a plant with putative antidepressant and neuroprotective properties

    No full text
    The dried stigma of the plant Crocus sativus L. (Iridaceae), commonly known as saffron, is used as a food spice and in folk medicine for various purposes. Of over 150 phytochemicals present in saffron, crocetin, a carotenoid precursor of the carotenoid crocin, is the primary bioactive metabolite and responsible for saffron's characteristic color. Other relevant bioactive components are picrocrocin and safranal. Saffron flower tepals and stigmas also contain flavonoids and anthocyanins. Potential therapeutic applications of saffron and its compounds have been investigated in in vitro and in vivo studies, reporting several properties including immunoregulatory, antiinflammatory, antioxidant, cardioprotective, antiatherogenic, antibacterial, antidiabetic, hepatoprotective, antidepressant, anxiolytic, and neuroprotective activities. The therapeutic effects of saffron and its extracts have also been studied clinically. The most researched clinical applications relate to mental health, with current evidence suggesting benefits in the treatment of depression and degenerative disorders of the central nervous system

    Measurement of forward W -> e nu production in pp collisions at root s=8 TeV

    No full text
    corecore