105 research outputs found

    Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History

    Get PDF
    Present-day correlations between leaf physiognomic traits (shape and size) and climate are widely used to estimate paleoclimate using fossil floras. For example, leaf-margin analysis estimates paleotemperature using the modern relation of mean annual temperature (MAT) and the site-proportion of untoothed-leaf species (NT). This uniformitarian approach should provide accurate paleoclimate reconstructions under the core assumption that leaf-trait variation principally results from adaptive environmental convergence, and because variation is thus largely independent of phylogeny it should be constant through geologic time. Although much research acknowledges and investigates possible pitfalls in paleoclimate estimation based on leaf physiognomy, the core assumption has never been explicitly tested in a phylogenetic comparative framework. Combining an extant dataset of 21 leaf traits and temperature with a phylogenetic hypothesis for 569 species-site pairs at 17 sites, we found varying amounts of non-random phylogenetic signal in all traits. Phylogenetic vs. standard regressions generally support prevailing ideas that leaf-traits are adaptively responding to temperature, but wider confidence intervals, and shifts in slope and intercept, indicate an overall reduced ability to predict climate precisely due to the non-random phylogenetic signal. Notably, the modern-day relation of proportion of untoothed taxa with mean annual temperature (NT-MAT), central in paleotemperature inference, was greatly modified and reduced, indicating that the modern correlation primarily results from biogeographic history. Importantly, some tooth traits, such as number of teeth, had similar or steeper slopes after taking phylogeny into account, suggesting that leaf teeth display a pattern of exaptive evolution in higher latitudes. This study shows that the assumption of convergence required for precise, quantitative temperature estimates using present-day leaf traits is not supported by empirical evidence, and thus we have very low confidence in previously published, numerical paleotemperature estimates. However, interpreting qualitative changes in paleotemperature remains warranted, given certain conditions such as stratigraphically closely-spaced samples with floristic continuity

    Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    Get PDF
    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    Measurement of the polar-angle distribution of leptons from W boson decay as a function of the W transverse momentum in proton-antiproton collisions at sqrt{s}=1.8 TeV

    Get PDF
    We present a measurement of the coefficient alpha_2 of the leptonic polar-angle distribution from W boson decays, as a function of the W transverse momentum. The measurement uses an 80+/-4 pb^{-1} sample of proton-antiproton collisions at sqrt{s}=1.8 TeV collected by the CDF detector and includes data from both the W->e+nu and W->mu+nu decay channels. We fit the W boson transverse mass distribution to a set of templates from a Monte Carlo event generator and detector simulation in several ranges of the W transverse momentum. The measurement agrees with the Standard Model expectation, whereby the ratio of longitudinally to transversely polarized W bosons, in the Collins-Soper W rest frame, increases with the W transverse momentum at a rate of approximately 15% per 10 GeV/c.Comment: 47 pages, 16 figures, submitted to Physical Review

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    The role of zirconium in microalloyed steels

    Get PDF
    Recently there has been a renewed interest in the addition of zirconium to microalloyed steels. It has been used since the early 1920's, but has never been universally employed, as have niobium, titanium or vanadium. The functions of zirconium in steelmaking are associated with a strong chemical affinity, in decreasing order, for oxygen, nitrogen, sulphur and carbon. Historically, the main use of additions of zirconium to steel was for combination preferentially with sulphur and so avoid the formation of manganese sulphide, known to have a deleterious influence of the impact toughness of wrought and welded steel. Modern steelmaking techniques have also raised the possibility that zirconium additions can reduce the austenite grain size and increase dispersion strengthening, due to precipitation of zirconium carbonitrides, or in high nitrogen vanadium-zirconium steels, vanadium nitride. This review gathers information on the compounds of zirconium identified in steels together with crystallographic data and solubility equations. Also brief accounts of the role of sulphides and particles in general on austenite grain size control and toughness are included

    Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms

    No full text
    The rapid diversification of angiosperms through the Early Cretaceous period, between about 130–100 million years ago, initiated fundamental changes in the composition of terrestrial vegetation and is increasingly well understood on the basis of a wealth of palaeobotanical discoveries over the past four decades and their integration with improved knowledge of living angiosperms. Prevailing hypotheses, based on evidence both from living and from fossil plants, emphasize that the earliest angiosperms were plants of small stature with rapid life cycles that exploited disturbed habitats in open, or perhaps understorey, conditions. However, direct palaeontogical data relevant to understanding the seed biology and germination ecology of Early Cretaceous angiosperms are sparse. Here we report the discovery of embryos and their associated nutrient storage tissues in exceptionally well-preserved angiosperm seeds from the Early Cretaceous. Synchrotron radiation X-ray tomographic microscopy of the fossil embryos from many taxa reveals that all were tiny at the time of dispersal. These results support hypotheses based on extant plants that tiny embryos and seed dormancy are basic for angiosperms as a whole. The minute size of the fossil embryos, and the modest nutrient storage tissues dictated by the overall small seed size, is also consistent with the interpretation that many early angiosperms were opportunistic, early successional colonizers of disturbance-prone habitats

    Postcards from the Mesozoic: Forest landscapes with giant flowering trees, enigmatic seed ferns, and other naked-seed plants

    No full text
    Earth’s vegetation during the 186 million years of the Mesozoic, from the Paleogene–Cretaceous boundary at 66 million years ago back to the Triassic–Permian boundary at 252 million years ago, was filled with forests. Like today, the forest was the dominant terrestrial ecosystem. The trees that created the forest habitat, along with the other woody plants and ferns in the understory and groundcover, were the primary producers that powered Earth’s ecosystems by converting sunlight into chemical energy through photosynthesis. Yet, the forests that flourished during the Mesozoic differed from those found on Earth today. The Mesozoic climate was generally warmer, with milder seasons, a higher sea level, and no polar ice. This resulted in evergreen forests that may have looked superficially similar to gymnosperm-dominated forests of today, but were made up of very different kinds of plants. This is because major evolutionary changes took place in the plant world during this time interval. The Cretaceous witnessed the emergence and diversification of the flowering plants, which define our global flora now. In contrast, the Jurassic and Triassic floras were dominated by gymnosperms such as conifers and cycads, as well as by other, enigmatic, naked-seed plants including seed ferns and bennettitaleans that are now extinct. Continental drift tore landmasses apart, separating Northern Hemisphere floras with ginkgoes from the Gondwana flora in the south, which also is now extinct. Geological time, biotic evolution, and plate tectonics all contributed to the making of paleobotanically unique forests in different parts of the world. In this chapter, we present a series of written postcards from the Mesozoic, each one describing a forested landscape, as we travel back in time together on a virtual plant safari
    • …
    corecore