637 research outputs found

    Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

    Get PDF
    In this work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID). The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM) experiments, which implies that the cobalt nanospheres must be as small as possible while bearing high saturation magnetization. It was found that the cobalt content and the corresponding saturation magnetization of the nanospheres decrease for nanosphere diameters less than 300 nm. Electron holography measurements show the formation of a magnetic vortex state in remanence, which nicely agrees with magnetic hysteresis loops performed by local magnetometry showing negligible remanent magnetization. As investigated by local magnetometry, optimal behavior for high-resolution MRFM has been found for cobalt nanospheres with a diameter of ˜200 nm, which present atomic cobalt content of ˜83 atom % and saturation magnetization of 106 A/m, around 70% of the bulk value. These results represent the first comprehensive investigation of the magnetic properties of cobalt nanospheres grown by FEBID for application in MRFM

    Optimization of pt-c deposits by cryo-fibid: Substantial growth rate increase and quasi-metallic behaviour

    Get PDF
    The Focused Ion Beam Induced Deposition (FIBID) under cryogenic conditions (Cryo-FIBID) technique is based on obtaining a condensed layer of precursor molecules by cooling the substrate below the condensation temperature of the gaseous precursor material. This condensed layer is irradiated with ions according to a desired pattern and, subsequently, the substrate is heated above the precursor condensation temperature, revealing the deposits with the shape of the exposed pattern. In this contribution, the fast growth of Pt-C deposits by Cryo-FIBID is demonstrated. Here, we optimize various parameters of the process in order to obtain deposits with the lowest-possible electrical resistivity. Optimized ~30 nm-thick Pt-C deposits are obtained using ion irradiation area dose of 120 µC/cm2 at 30 kV. This finding represents a substantial increment in the growth rate when it is compared with deposits of the same thickness fabricated by standard FIBID at room temperature (40 times enhancement). The value of the electrical resistivity in optimized deposits (~4 × 104 µO cm) is suitable to perform electrical contacts to certain materials. As a proof of concept of the potential applications of this technology, a 100 µm × 100 µm pattern is carried out in only 43 s of ion exposure (area dose of 23 µC/cm2), to be compared with 2.5 h if grown by standard FIBID at room temperature. The ion trajectories and the deposit composition have been simulated using a binary-collision-approximation Monte Carlo code, providing a solid basis for the understanding of the experimental results

    Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography

    Get PDF
    Sub-20 nm patterns have been fabricated by using oxidation scanning probe lithography on epitaxial graphene. The structural and chemical properties of these nanopatterns have been characterized by high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. The electron microscopy images reveal that the nanolithography process modifies the graphene monolayer and a thin region of the SiC substrate (1 nm thick). Spatially-resolved electron spectroscopies show that the nanopatterns are made of graphene oxide. The combination of spatially-resolved structural and chemical analysis of graphene nanopatterns will enable the development of high-performance graphene devices

    Coastal warming under climate change: Global, faster and heterogeneous

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGThe assessment of expected changes in coastal sea surface temperature (SST) on a global scale is becoming increasingly important due to the growing pressure on coastal ecosystems caused by climate change. To achieve this objective, 17 Global Climate Models from CMIP6 were used, with data from historical and hist-1950 experiments spanning 1982–2050. This analysis highlights significant warming of coastal areas worldwide, with higher and more variable rates of warming than observed in previous decades. All basins are projected to experience an increase in coastal SST near 1 °C by mid-century, with some regions exhibiting nearshore SST anomalies exceeding 2 °C for the period 2031–2050 relative to 1995–2014. Regarding the Eastern Upwelling Boundary Systems, only the Canary upwelling system and the southern part of the Humboldt upwelling system manage to show lower-than-average SST warming rates, maintaining, to a certain extent, their ability to buffer global warmingXunta de Galicia | Ref. ED431C 2021/44Xunta de Galicia | Ref. ED481B-2021-108Fundação para a Ciência e a Tecnologia | Ref. UIDP/50017/2020Fundação para a Ciência e a Tecnologia | Ref. UIDB/50017/2020Ministerio de Ciencia e Innovación y Xunta de Galicia | Ref. PRTR-C17·I1Ministerio de Ciencia e Investigación | Ref. TED2021-129524B-I0

    3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

    Get PDF
    Currently, the patterning of innovative three-dimensional (3D) nano-objects is required for the development of future advanced electronic components. Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimensional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufacturing technologies. We report here on the deposition of 3D hollow tungsten carbide nanowires with tailored diameters by tuning two key growth parameters, namely current and dose of the ion beam. Our results show the control of geometry in 3D hollow nanowires, with outer and inner diameters ranging from 36 to 142 nm and from 5 to 28 nm, respectively; and lengths from 0.5 to 8.9 mu m. Transmission electron microscopy experiments indicate that the nanowires have a microstructure of large grains with a crystalline structure compatible with the face-centered cubic WC1-x phase. In addition, 3D electron tomographic reconstructions show that the hollow center of the nanowires is present along the whole nanowire length. Moreover, these nanowires become superconducting at 6.8 K and show high values of critical magnetic field and critical current density. Consequently, these 3D nano-objects could be implemented as components in the next generation of electronics, such as nano-antennas and sensors, based on 3D superconducting architectures

    Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    Get PDF
    We report the fabrication of epitaxial Y3Fe5O12 (YIG) thin films on Gd3Ga5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of Fe3+ ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications

    Structurally oriented nano-sheets in co thin films: Changing their anisotropic physical properties by thermally-induced relaxation

    Get PDF
    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures

    Magnetic relaxation phenomena and cluster glass properties of La{0.7-x}Y{x}Ca{0.3}MnO{3} manganites

    Full text link
    The dynamic magnetic properties of the distorted perovskite system La{0.7-x}Y{x}Ca{0.3}MnO{3} (0 <= x <= 0.15) have been investigated by ac-susceptibility and dc magnetization measurements, with emphasis on relaxation and aging studies. They evidence for x >= 0.10 the appearance of a metallic cluster glass phase, that develops just below the ferromagnetic transition temperature. The clusters grow with decreasing temperature down to a temperature T(f0) at which they freeze due to severe intercluster frustration. The formation of these clusters is explained by the presence of yttrium induced local structural distortions that create localized spin disorder in a magnetic lattice where double-exchange ferromagnetism is dominant.Comment: Accepted for publication in Phys. Rev.

    All-Carbon Electrode Molecular Electronic Devices Based on Langmuir–Blodgett Monolayers

    Get PDF
    Nascent molecular electronic devices, based on monolayer Langmuir–Blodgett films sandwiched between two carbonaceous electrodes, have been prepared. Tightly packed monolayers of 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid are deposited onto a highly oriented pyrolytic graphite electrode. An amorphous carbon top contact electrode is formed on top of the monolayer from a naphthalene precursor using the focused electron beam induced deposition technique. This allows the deposition of a carbon top-contact electrode with well-defined shape, thickness, and precise positioning on the film with nm resolution. These results represent a substantial step toward the realization of integrated molecular electronic devices based on monolayers and carbon electrodes
    • …
    corecore