19 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Beyond the average patient: how neuroimaging models can address heterogeneity in dementia

    Get PDF
    Dementia is a highly heterogeneous condition, with pronounced individual differences in age of onset, clinical presentation, progression rates and neuropathological hallmarks, even within a specific diagnostic group. However, the most common statistical designs used in dementia research studies and clinical trials overlook this heterogeneity, instead relying on comparisons of group average differences (e.g. patient versus control or treatment versus placebo), implicitly assuming within-group homogeneity. This one-size-fits-all approach potentially limits our understanding of dementia aetiology, hindering the identification of effective treatments. Neuroimaging has enabled the characterization of the average neuroanatomical substrates of dementias; however, the increasing availability of large open neuroimaging datasets provides the opportunity to examine patterns of neuroanatomical variability in individual patients. In this update, we outline the causes and consequences of heterogeneity in dementia and discuss recent research that aims to tackle heterogeneity directly, rather than assuming that dementia affects everyone in the same way. We introduce spatial normative modelling as an emerging data-driven technique, which can be applied to dementia data to model neuroanatomical variation, capturing individualized neurobiological 'fingerprints'. Such methods have the potential to detect clinically relevant subtypes, track an individual's disease progression or evaluate treatment responses, with the goal of moving towards precision medicine for dementia

    Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling.

    No full text
    BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is highly heterogeneous, with marked individual differences in clinical presentation and neurobiology. To explore this, we used neuroanatomical normative modeling to index regional patterns of variability in cortical thickness. We aimed to characterize individual differences and outliers in cortical thickness in patients with AD, people with mild cognitive impairment (MCI), and controls. Furthermore, we assessed the relationships between cortical thickness heterogeneity and cognitive function, ÎČ-amyloid, phosphorylated-tau, and ApoE genotype. Finally, we examined whether cortical thickness heterogeneity was predictive of conversion from MCI to AD. METHODS: Cortical thickness measurements across 148 brain regions were obtained from T1-weighted MRI scans from 62 sites of the Alzheimer's Disease Neuroimaging Initiative. AD was determined by clinical and neuropsychological examination with no comorbidities present. Participants with MCI had reported memory complaints, and controls were cognitively normal. A neuroanatomical normative model indexed cortical thickness distributions using a separate healthy reference data set (n = 33,072), which used hierarchical Bayesian regression to predict cortical thickness per region using age and sex, while adjusting for site noise. Z-scores per region were calculated, resulting in a Z-score brain map per participant. Regions with Z-scores <-1.96 were classified as outliers. RESULTS: Patients with AD (n = 206) had a median of 12 outlier regions (out of a possible 148), with the highest proportion of outliers (47%) in the parahippocampal gyrus. For 62 regions, over 90% of these patients had cortical thicknesses within the normal range. Patients with AD had more outlier regions than people with MCI (n = 662) or controls (n = 159) (F(2, 1,022) = 95.39, p = 2.0 × 10(-16)). They were also more dissimilar to each other than people with MCI or controls (F(2, 1,024) = 209.42, p = 2.2 × 10(-16)). A greater number of outlier regions were associated with worse cognitive function, CSF protein concentrations, and an increased risk of converting from MCI to AD within 3 years (hazard ratio 1.028, 95% CI 1.016-1.039, p = 1.8 × 10(-16)). DISCUSSION: Individualized normative maps of cortical thickness highlight the heterogeneous effect of AD on the brain. Regional outlier estimates have the potential to be a marker of disease and could be used to track an individual's disease progression or treatment response in clinical trials
    corecore