33 research outputs found

    Comment on "a Generalized Langevin Equation for 1/ƒ Noise"

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Superdiffusive Conduction: AC Conductivity with Correlated Noise

    Full text link
    We present evidence of the existence of a superdiffusive regime in systems with correlated disorder for which localization is suppressed. An expression for anomalous electrical conductivity at low frequencies is found by using a generalized Langevin equation whose memory function accounts for the interactions between the carriers. New mechanisms inducing a superdiffusive conductivity are discussed and experimental possibilities for observing that phenomenon in nanotubes and superlattices are presented.Comment: 7 pages, no figure

    Interaction model for magnetic holes in a ferrofluid layer

    Get PDF
    Nonmagnetic spheres confined in a ferrofluid layer (magnetic holes) present dipolar interactions when an external magnetic field is exerted. The interaction potential of a microsphere pair is derived analytically, with a precise care for the boundary conditions along the glass plates confining the system. Considering external fields consisting of a constant normal component and a high frequency rotating in-plane component, this interaction potential is averaged over time to exhibit the average interparticular forces acting when the imposed frequency exceeds the inverse of the viscous relaxation time of the system. The existence of an equilibrium configuration without contact between the particles is demonstrated for a whole range of exciting fields, and the equilibrium separation distance depending on the structure of the external field is established. The stability of the system under out-of-plane buckling is also studied. The dynamics of such a particle pair is simulated and validated by experiments.Comment: 15 pages, 11 figures (18 with subfigures). to appear in Phys. Rev.

    A Quantum-mechanical Approach for Constrained Macromolecular Chains

    Full text link
    Many approaches to three-dimensional constrained macromolecular chains at thermal equilibrium, at about room temperatures, are based upon constrained Classical Hamiltonian Dynamics (cCHDa). Quantum-mechanical approaches (QMa) have also been treated by different researchers for decades. QMa address a fundamental issue (constraints versus the uncertainty principle) and are versatile: they also yield classical descriptions (which may not coincide with those from cCHDa, although they may agree for certain relevant quantities). Open issues include whether QMa have enough practical consequences which differ from and/or improve those from cCHDa. We shall treat cCHDa briefly and deal with QMa, by outlining old approaches and focusing on recent ones.Comment: Expands review published in The European Physical Journal (Special Topics) Vol. 200, pp. 225-258 (2011

    Planck early results III : First assessment of the Low Frequency Instrument in-flight performance

    Get PDF
    Peer reviewe

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction p, angle \u3c8, and dispersion of angles S of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of p decrease with increasing NH. The uncertainty on the maximum polarization fraction, pmax=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between p and S is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of p, \u3c8, and S mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S 7p, looking for residual trends. While p decreases by a factor of 3--4 between NH=1020 cm 122 and NH=2 71022 cm 122, S 7p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S 7p with the dust temperature, even though in the diffuse ISM lines of sight with high p and low S tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NH and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmax observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Engineering tube shapes to control confined transport

    No full text
    Transport of particles in confined structures can be modeled by means of diffusion in a potential of entropic nature. The entropic transport model proposes a drift-diffusion kinetic equation for the evolution of the probability density in which the diffusion coefficient depends on position and the drift term contains an entropic force. The model has been applied to analyze transport in single cavities and through periodic structures of different shape, and to investigate the nature of non-equilibrium fluctuations as well. The transport characteristics depends strongly on the contour of the region through which particles move, which defines the entropic potential. We show that the form of the entropic potential can be properly designed to optimize and govern how molecules diffuse and get drifted in tortuous channels. The shape of a tube or channel can be smartly engineered to control transport for the desired application

    Non-Linear Hydrodynamic Fluctuation Theory for a Charged Two-Component Fluid in Equilibrium

    No full text

    Casimir forces exerted by epsilon-near-zero hyperbolic materials

    No full text

    Author Correction: Casimir forces exerted by epsilon-near-zero hyperbolic materials (Scientific Reports, (2020), 10, 1, (16831), 10.1038/s41598-020-73995-0)

    No full text
    In the original version of this Article, Igor S. Nefedov was incorrectly affiliated with “Saratov State University, Astrakhanskaya 83, Saratov, Russian Federation, 410012”. The correct affiliation is listed below: Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia. This error has now been corrected in the HTML and PDF versions of the Article. © 2020, The Author(s)
    corecore