556 research outputs found

    The role of fundamental solution in Potential and Regularity Theory for subelliptic PDE

    Get PDF
    In this survey we consider a general Hormander type operator, represented as a sum of squares of vector fields plus a drift and we outline the central role of the fundamental solution in developing Potential and Regularity Theory for solutions of related PDEs. After recalling the Gaussian behavior at infinity of the kernel, we show some mean value formulas on the level sets of the fundamental solution, which are the starting point to obtain a comprehensive parallel of the classical Potential Theory. Then we show that a precise knowledge of the fundamental solution leads to global regularity results, namely estimates at the boundary or on the whole space. Finally in the problem of regularity of non linear differential equations we need an ad hoc modification of the parametrix method, based on the properties of the fundamental solution of an approximating problem

    Aligning the Good Practice MASK With the Objectives of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF
    The reference sites of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) were renewed in 2019. The DG Sante good practice Mobile Airways Sentinel networK was reviewed to meet the objectives of the EIP on AHA. It included 1) Management of care process, 2) Blueprint of digital transformation, 3) EIP on AHA, innovation to market, 4) Community for monitoring and assessment framework, 5) Political, organizational, technological and financial readiness, 6) Contributing to European co-operation and transferability, 7) Delivering evidence of impact against the triple win approach, 8) Contribution to the European Digital Transformation of Health and Care and 9) scale of demonstration and deployment of innovation.Peer reviewe

    Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

    Get PDF
    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter laboratory variations are discussed using a Cs,FA,MA Pb I,Br 3 halide perovskite thin film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance free JV curve with a potential power conversion efficiency of 24.6 . For grainsizes above amp; 8776;20 nm, intra grain charge transport is characterized by terahertz sum mobilities of amp; 8776;32 cm2 V amp; 8722;1 s amp; 8722;1. Drift diffusion simulations indicate that these intra grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presente

    Performance of reconstruction and identification of τ leptons decaying to hadrons and vτ in pp collisions at √s=13 TeV

    Get PDF
    The algorithm developed by the CMS Collaboration to reconstruct and identify τ leptons produced in proton-proton collisions at √s=7 and 8 TeV, via their decays to hadrons and a neutrino, has been significantly improved. The changes include a revised reconstruction of π⁰ candidates, and improvements in multivariate discriminants to separate τ leptons from jets and electrons. The algorithm is extended to reconstruct τ leptons in highly Lorentz-boosted pair production, and in the high-level trigger. The performance of the algorithm is studied using proton-proton collisions recorded during 2016 at √s=13 TeV, corresponding to an integrated luminosity of 35.9 fbÂŻÂč. The performance is evaluated in terms of the efficiency for a genuine τ lepton to pass the identification criteria and of the probabilities for jets, electrons, and muons to be misidentified as τ leptons. The results are found to be very close to those expected from Monte Carlo simulation

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero
    • 

    corecore