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The role of fundamental solution in Potential
and Regularity Theory for subelliptic PDE

Andrea Bonfiglioli, Giovanna Citti, Giovanni Cupini, Maria Manfredini,
Annamaria Montanari, Daniele Morbidelli, Andrea Pascucci, Sergio Polidoro,
Francesco Uguzzoni

tu se’ lo mio maestro e ’l mio autore
tu se’ solo colui da cu’ io tolsi

lo bello stilo che m’ha fatto onore.
Dante Alighieri

Abstract In this survey we consider a general Hörmander type operator, represented
as a sum of squares of vector fields plus a drift and we outline the central role of
the fundamental solution in developing Potential and Regularity Theory for solu-
tions of related PDEs. After recalling the Gaussian behavior at infinity of the kernel,
we show some mean value formulas on the level sets of the fundamental solution,
which are the starting point to obtain a comprehensive parallel of the classical Po-
tential Theory. Then we show that a precise knowledge of the fundamental solution
leads to global regularity results, namely estimates at the boundary or on the whole
space. Finally in the regularity problem of non linear differential equations we use
an ad hoc modification of the parametrix method, based on the properties of the
fundamental solution of an approximating problem.
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Dipartimento di Matematica, Università di Bologna, e-mail: andrea.bonfiglioli6@
unibo.it,giovanna.citti@unibo.it,giovanni.cupini@unibo.it,
maria.manfredini@unibo.it,annamaria.montanari@unibo.it,daniele.
morbidelli@unibo.it,andrea.pascucci@unibo.it,francesco.uguzzoni@
unibo.it

Sergio Polidoro
Dipartimento di Scienze Fisiche, Informatiche e Matematiche e-mail: sergio.polidoro@
unimore.it

1

andrea.bonfiglioli6@unibo.it, giovanna.citti@unibo.it, giovanni.cupini@unibo.it, maria.manfredini@unibo.it, annamaria.montanari@unibo.it, daniele.morbidelli@unibo.it, andrea.pascucci@unibo.it, francesco.uguzzoni@unibo.it
andrea.bonfiglioli6@unibo.it, giovanna.citti@unibo.it, giovanni.cupini@unibo.it, maria.manfredini@unibo.it, annamaria.montanari@unibo.it, daniele.morbidelli@unibo.it, andrea.pascucci@unibo.it, francesco.uguzzoni@unibo.it
andrea.bonfiglioli6@unibo.it, giovanna.citti@unibo.it, giovanni.cupini@unibo.it, maria.manfredini@unibo.it, annamaria.montanari@unibo.it, daniele.morbidelli@unibo.it, andrea.pascucci@unibo.it, francesco.uguzzoni@unibo.it
andrea.bonfiglioli6@unibo.it, giovanna.citti@unibo.it, giovanni.cupini@unibo.it, maria.manfredini@unibo.it, annamaria.montanari@unibo.it, daniele.morbidelli@unibo.it, andrea.pascucci@unibo.it, francesco.uguzzoni@unibo.it
andrea.bonfiglioli6@unibo.it, giovanna.citti@unibo.it, giovanni.cupini@unibo.it, maria.manfredini@unibo.it, annamaria.montanari@unibo.it, daniele.morbidelli@unibo.it, andrea.pascucci@unibo.it, francesco.uguzzoni@unibo.it
sergio.polidoro@unimore.it
sergio.polidoro@unimore.it


2 Authors Suppressed Due to Excessive Length

1 Introduction

In this paper we consider a general operator of the form

LA =
m

∑
i, j=1

ai, j (t,x)XiX j−X0 (1)

where

Xi =
N

∑
j=1

σi, j∂x j , X0 = ∂t +
N

∑
j=1

σ0, j∂x j ,

and the coefficients σi, j will be dependent only on the spatial variables x ∈ RN . We
also require that X0,X1,X2, . . . ,Xm is a system of real smooth vector fields defined
in some domain D ⊂ [0,T [×RN satisfying the Hörmander’s rank condition at any
point:

rank(Lie(X0, . . . ,Xm)(t,x)) = N +1, ∀ (t,x) ∈ D.

The matrix A =
{

ai, j (t,x)
}m

i, j=1 is real symmetric and uniformly positive definite,
that is

λ−1 |ξ |2 ≤ ∑
m
i, j=1 ai, j (t,x)ξiξ j ≤ λ |ξ |2 (2)

for some λ > 0 and for every ξ ∈ RN and every (t,x) ∈ D. We will assign degree
1 to the vector fields (Xi)i=1,...,m, (denoted d(Xi) = 1), while d(X0) = 2. We will
denote d((t,x),(τ,ξ )) the Carnot-Carathéodory metric generated in D by the vector
fields X0,X1, . . . ,Xm with their degrees. Precisely for every pair of points (t,x) and
(τ,ξ ), we define

d((t,x),(τ,ξ )) = inf
{

r > 0
∣∣∣ there is a Lipschitz path γ such that

γ(0) = (t,x), γ(1) = (τ,ξ ), and, for a.e. s, γ
′(s) =

m

∑
i=0

βi(s)Xi(γ(s))

with |βi(s)| ≤ r for i = 1, . . . ,m, and |β0(s)| ≤ r2
}
.

(3)

The Carnot-Carathéodory metric generated by the vector fields X0,X1, . . . ,Xm plays
a crucial role in the regularity theory for subelliptic degenerate operators.

After the celebrated Hörmander’s paper [65], where the explicit fundamental
solution of a Kolmogorov-type operator was calculated, Folland [55], Rothschild-
Stein [98], Jerison and Sanchez Calle [66] proved existence and asymptotic behavior
of the fundamental solution, under the assumption that A is the identity. Almost at
the same time, Franchi and Lanconelli [58] studied regularity of sum of squares of
diagonal vector fields and established a Poincaré type inequality. The equivalence
of several distances was proved by Nagel, Stein and Wainger in [88]. After that, in
the last twenty years we witnessed an extraordinary development of the theory of
subelliptic operators. We refer the reader to the book [21] and to the introduction of
each section of this paper, for more historical remarks and references.
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A significant contribution to the development of Potential Theory of subelliptic
PDEs is due to Ermanno Lanconelli. His personal and original approach is based
on a far-reaching use of the fundamental solution in order to prove, in this setting, a
complete parallel of the classical Potential and Regularity Theory.

In this paper we take this perspective, and we describe from a unitary point of
view a number of results obtained by the authors in collaboration with him. In Sec-
tion 2 we will recall Gaussian estimates of the fundamental solution of large classes
of operators of the type (1). In particular for the heat equation we discuss the re-
sults of Bonfiglioli, Lanconelli and Uguzzoni [19], [20], Bramanti, Brandolini, Lan-
conelli and Uguzzoni in [28], and for the Kolmogorov operator we quote the results
of Polidoro [95], Lanconelli and Polidoro [78], Lanconelli and Pascucci in [74]. In
Section 3 we describe the quasi-exponential mappings, introduced in Lanconelli and
Morbidelli [73], which are a tool to obtain a Poincaré inequality. Level sets of the
fundamental solution are special families of balls, on which mean value formulas
have been proved by Citti, Garofalo and Lanconelli (see [41]), Lanconelli and Pas-
cucci (see [75]), which lead to another proof of the Poincaré inequality. Using the
mean value formulas, characterizations of subharmonicity were obtained by Bon-
figlioli and Lanconelli ([17], [13], [15], [17]). The optimality of these sets have been
investigated by Lanconelli [72], Abbondanza and Bonfiglioli [1], Kogoj, Lanconelli
and Tralli [68], Kogoj and Tralli [69]. The properties of the fundamental solution
immediately imply internal regularity of solutions. Here we are also interested in
global regularity of solutions which will be presented in Section 4. Precisely we
will recall Schauder regularity up to the boundary, by Manfredini in [79], and the
estimates on the whole of space by Bramanti, Cupini, Lanconelli and Priola [31]
and [32]. Finally in Section 5 we conclude our survey with a discussion on regu-
larity of solutions of non linear-equations with nonlinearity in the vector fields, and
in particular of the Levi equation. For the case of C2 see [40], [42]. For the Levi
equation in Cn+1 with n > 1, we refer to the regularity results in [83], [81], [49], the
counterexamples by Gutierrez, Lanconelli and Montanari [62], and the symmetry
results by Martino and Montanari [80].

1.1 Applications to complex analysis, finance and vision

Equation (1) is a natural generalization of the classical equation which models par-
ticle interactions in phase spaces. In this case the drift term expresses the coupling
position-velocity:

X0 =
m

∑
j=1

p j∂q j +∂t

and the matrix (ai j) is the identity in the space of velocities:

L =
1
2

m

∑
j=1

∂
2
p j
−

m

∑
j=1

p j∂q j −∂t , (t,q, p) ∈ R×Rm×Rm. (4)
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Kolmogorov constructed already in 1934 an explicit fundamental solution of (4)
(see (13) below) which is a C∞ function outside the diagonal [70].

These models, introduced at microscopical level for the description of kinetic the-
ory of gases (see [36]), can be applied at meso-scopical level in biological models,
where the atoms are replaced by cells. In models of vision the visual signals are de-
tected by the retinal cells. Their output is taken in input by the cells of the V1, which
detect secondary variables, typically gradient of perceived images or velocities of
objects. The visual signal then propagates in the higher dimensional cortical space
where position, gradients and velocities are coded. A phase space is then physiolog-
ically implemented in the cortex, giving rise to subelliptic diffusion, which will be
endowed with a CR structure. Propagation of the signal have been modeled with a
Kolmogorov-Fokker-Planck equation by [87], [109], [3]. The interface between two
activated regions propagates with curvature equations in this subriemannian struc-
ture, leading to a PDE with non linearity in the vector fields [45].

As a generalization of the phase space, we can consider a general CR structure
or a real hyper-surface in Cn: in this case the analogous of the coupling position-
velocity is realized by the quasicomplex structure. The basis of the complex tangent
bundle is a lower dimensional distribution, described by a family of vector fields. In
particular, curvature equations are naturally expressed in terms of vector fields and
provide examples non linear Hörmander type PDE (see [39, 84]).

We also notice that the fundamental solution of a Kolmogorov equation has a
natural interpretation in probability theory, (see for example [90]). Indeed the fun-
damental solution of (4) can be related to the transition density of a 2m-dimensional
stochastic process Y = (Y1,Y2) solution of the Langevin’s equation{

dY1(t) = dW (t),
dY2(t) =−Y1(t)dt,

(5)

where W is a m-dimensional standard Brownian motion.
Also in financial mathematics, stochastic models involving linear and non lin-

ear Kolmogorov type equations are relevant because they appear when considering
path-dependent contingent claims (see, for instance, [91]). More precisely, let us as-
sume that the price S of an asset is defined as in the Black-Scholes framework [10]:
St = exp

((
r− σ2

2

)
t +σWt

)
where r and σ denote the constant interest rate and

volatility respectively. Then the price u = u(t,St ,Yt) of a contingent claim which
depends on Yt =

∫ t
0 logSsds, solves a Kolmogorov type equation (see, for instance,

[4]). Other examples of path-dependent models arising in finance can be found in
[63] and [56].

Equation (5) explains from a different perspective the application of the Kol-
mogorov equation in the previous recalled models, where it is necessary to describe
the interaction between variables with a deterministic evolution (typically in the
world space) and variables with a stochastic one (typically the frequency variables).
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2 Fundamental solutions of linear operators

The first aspect of the problem we want to face is the existence and Gaussian esti-
mates and of a fundamental solution for the operator of (1) with Hölder continuous
coefficients. The first existence results for operators of Hörmander type operators,
refer to sum of squares of vector fields, plus a drift term.

LI =
m

∑
i=1

X2
i −X0. (6)

In this case the matrix (ai j) in (1) is the identity. In particular Hörmander pointed
out in the introduction of his celebrated paper on hypoelliptic second order differ-
ential equations [65] that the Kolmogorov method can also be applied to a class of
operators which generalize equation (4), but fall in the general framework (1). Uni-
form but not Gaussian estimates, for families of Hörmander operators of this type,
were proved by Rothschild and Stein [98]. Gaussian but not uniform estimates were
proved by Jerison and Sánchez-Calle [66], via Gevrey regularity methods, Varopou-
los, Saloff-Coste and Coulhon [107], via semi-group theory, and by Kusuoka and
Stroock [71], via probabilistic techniques.

The results we plan to present here refer to non divergence form operators, with
Cα coefficients, and the main results regarding the heat equation are due to Bon-
figlioli, Lanconelli and Uguzzoni [19], [20], Bramanti, Brandolini, Lanconelli and
Uguzzoni in [28] while for the Kolmogorov operator we quote the results of Poli-
doro [95], Lanconelli and Polidoro [78], Lanconelli and Pascucci in [74].

The contribution of these papers are twofold: from one side they establish uni-
form Gaussian bounds for the fundamental solution of a model operator of the form

Lw =
m

∑
i, j=1

ai j(w)Xi,wX j,w−X0,w (7)

where (ai j(w)) are constant coefficients while the family (Xi,w) is can be the given
operators or a nilpotent and stratified approximation. This goal can be reached either
with probabilistic instruments or with an analytic approach:

They apply the Levi’s parametrix method to prove the results for operators with
Hölder continuous coefficients ai j. The method is based on the approximation of
the fundamental solution ΓA(z;ζ ) of the given operator by the fundamental solution
Γw(z;ζ ) of a model operator belonging of the previous studied class and obtained
by evaluating the coefficient at a point w and approximating the vector fields in a
neighborhood of each point w.

We present here the application of the method in two particularly significant cases
of equation (1): the Kolmogorov equation, which will be studied with stochastic
instruments and the heat equation, which will be studied with deterministic ones.
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2.1 Kolmogorov type operators

We will call Kolmogorov type operators an operator of the form

LAu(t,x) :=
m

∑
i, j=1

ai j(t,x)∂xix j u(t,x)+
N

∑
i, j=1

bi jx j∂xiu(t,x)−∂tu(t,x), (8)

where ai j satisfy condition (2). This operator clearly falls in the general framework
of equation (1), by choosing X0 = ∂t −∑

N
i, j=1 bi, jxi∂x j , X j = ∂ j. In order to study its

fundamental solution, we will preliminary study a model operator

Ku(t,x) :=
1
2

m

∑
j=1

∂
2
x j

u(t,x)+
N

∑
i, j=1

bi jx j∂xiu(t,x)−∂tu(t,x). (9)

The linear stochastic differential equation in RN associated to K is the following:

dZt = BZtdt +σdWt , Zs = z, (10)

where W is a standard m-dimensional Brownian motion, B is a N×N constant ma-
trix and σ is the N×m constant matrix

σ =

(
Im
0

)
(11)

where Im denotes the identity matrix in Rm. Then the solution of (10) is a Gaussian
process with mean vector

E [Zt ] = e(t−s)Bz,

and covariance matrix C0(t− s) where

C0(t) =
∫ t

0
e(t−ρ)B

σσ
∗e(t−ρ)B∗dρ, t ≥ 0.

Since σ has dimension N ×m, the matrix C0(t) is generally only positive semi-
definite in RN , that is Zt possibly has degenerate multi-normal distribution. We re-
call the well-known Kalman condition from control theory provides an operative
criterion for the positivity of C0(t): the matrix C0(t) is positive definite for t > 0 if
and only if

rank
[
σ , Bσ , B2

σ , . . . , BN−1
σ
]
= N. (12)

Then (12) ensures that Zt has a Gaussian transition density

G(s,y; t,x)=
1√

(2π)N detC0(t− s)
exp
(
−1

2
〈C−1

0 (t− s)(x− e(t−s)By),x− e(t−s)By
)
.

(13)
Furthermore G is the fundamental solution of the Kolmogorov PDE associated to
(10).
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The fundamental solution under special assumptions has been found by Kol-
mogorov and Hörmander [65], but a systematic study of the the operator (9) has
been done by Lanconelli and Polidoro in [78]. In particular they recognized that the
hypoellipticity is equivalent to the following explicit expression of B, with respect
to a suitable basis of RN : B = (bi j)i, j=1,...,N writes in the form

B =


∗ ∗ · · · ∗ ∗

B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Br ∗

 , (14)

where each B j is a p j× p j−1 matrix with rank p j, with

p0 = m≥ p1 ≥ ·· · ≥ pr ≥ 1,
r

∑
j=0

p j = N, (15)

and the ∗-blocks are arbitrary. Let us explicitly recall that the stratification condition
implies in a standard way that in canonical coordinates there is a dilation and a
translation naturally associated to the vector fields.

Using the existence of the fundamental solution for the constant coefficient op-
erator, from the parametrix method it follows:

Theorem 2.1. Assume that (ai j(t,x))i, j=1,...,m is symmetric with Hölder continuous
entries and satisfies (2) for some positive constant λ . Then the operator L defiend in
(8) has a fundamental solution Γ . Moreover, for any T > 0 there exist some positive
constants c−,c+,λ−,λ+ such that

c−Γ
−(t,x;τ,ξ )≤ Γ (t,x;τ,ξ )≤ c+Γ

+(t,x;τ,ξ ),∣∣∂x jΓ (t,x;τ,ξ )
∣∣≤ c+√

τ− t
Γ

+(t,x;τ,ξ ),

for any (t,x),(τ,ξ ) with 0 < τ− t < T . Here Γ± is the fundamental solution of L in
(9) with constant coefficients a+i j = λ+δi j, a−i j = λ−δi j.

We outline the proof of Theorem 2.1 given in Polidoro [96] and Di Francesco
and Pascucci [51].

Sketch of the proof. For fixed w∈R1+N , we denote by Γw(z;ζ ) the fundamental
solution of the model operator Lw, with constant coefficients evaluated at the point
w

Lwu :=
m

∑
i, j=1

ai j(w)XiX ju−X0.

Then we call parametrix the function

Z(z;ζ ) = Γζ (z;ζ ). (16)
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We remark that Z is a good approximation of Γ near ζ and the expression of Z can
be estimated explicitly. Then we suppose that the fundamental solution takes the
form:

Γ (z;ζ ) = Z(z;ζ )+
∫ t

0

∫
RN

Z(z;w)G(w;ζ )dw. (17)

In order to find the unknown function G, we impose that Γ is the solution to the
equation LΓ (·;ζ ) = 0 in ]0,+∞[×RN : we wish to point out one more time, to make
this totally transparent, that the operator L acts on the variable z while the point ζ is
fixed. Then formally we obtain

0 = LΓ (z;ζ ) = LZ(z;ζ )+L
∫∫

]0,T [×RN

Z(z;w)G(w;ζ )dw

= LZ(z;ζ )+
∫∫

]0,T [×RN

LZ(z;w)G(w;ζ )dw−G(z;ζ ),

hence
G(z;ζ ) = LZ(z;ζ )+

∫∫
]0,T [×RN

LZ(z;w)G(w;ζ )dw. (18)

Therefore G is a solution of an integral equation equivalent to a fixed-point problem
that can be solved by the method of successive approximations:

G(z;ζ ) =
+∞

∑
k=1

(LZ)k(z;ζ ), (19)

where

(LZ)1(z;ζ ) = LZ(z;ζ ),

(LZ)k+1(z;ζ ) =
∫∫

]0,T [×RN

LZ(z;w)(LZ)k(w;ζ )dw, k ∈ N.

It is possible to prove that there exists k0 ∈N such that, for all T > 0 and ζ = (0,y)∈
R1+N , the function (LZ)k(·;ζ ) is continuous and bounded for any k≥ k0. Moreover
the series

+∞

∑
k=k0

(LZ)k(·;ζ )

converges uniformly on the strip ]0,T [×RN . Furthermore, the function G(·,ζ ) de-
fined by (19) is a solution to the integral equation (18) in ]0,T [×RN and Γ in (17)
is a fundamental solution to L.

Remark 2.1. The method also gives some pointwise estimates of the fundamental
solution and its derivatives. We refer to Corielli, Foschi and Pascucci [48] where the
accuracy of the parametrix method is studied to obtain numerical approximations
for financial problems.
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Remark 2.1. There exists a positive constant M and, for every T > 0, there exists
c = c(T )> 0 such that

e−Md((t,x),(τ,y))2/(t−τ)

c|B
(
(t,x),

√
t− τ

)
|
≤ ΓA ((x, t),(y,τ))≤

ce−d((t,x),(τ,y))2/M(t−τ)

|B
(
(t,x),

√
t− τ

)
|

(20)

for any (t,x),(τ,y) with 0 < τ− t < T , where d is the distance defined by the vector
fields. Gaussian estimates for a general equation like (1) have been obtained by [26],
[37]

2.2 Gaussian estimates for the fundamental solution of Heat
operators

An other particularly notable class of operators of type (1) is given by the heat
operators

LA =
m

∑
i, j=1

ai j (t,x)XiX j−∂t (21)

For sum of squares of vector fields operators of the kind (1) with left invariant
homogeneous vector fields on Lie groups, Gaussian bounds have been proved by
Varopoulos (see [107] and references therein). In absence of a group structure,
Gaussian bounds have been proved, on a compact manifold and for finite time, by
Jerison-Sanchez-Calle [66], with an analytic approach and, on the whole RN+1, by
Kusuoka-Stroock, (see [71] and references therein), using the Malliavin stochastic
calculus.

In a long series of papers Bonfiglioli, Lanconelli, Uguzzoni [19], [20], [22], Bra-
manti, Brandolini, Lanconelli, Uguzzoni [28], proved new Gaussian bounds for the
operator LA with Hölder continuous coefficients. In the first papers the vector fields
were assumed to belong to a Carnot group. Then, in [28] the results are presented
in the full generality of C∞ vector fields satisfying the Hörmander condition. In this
last case, the operator LA is initially assumed defined only on a cylinder R×Ω for
some bounded Ω , but, in order to obtain asymptotic estimates, it is extended to the
whole space RN+1, in such a way that, outside a compact spatial set, it coincides
with the classical heat operator. Henceforth all our statements will be referred to
this extended operator.

Theorem 2.2 (Gaussian bounds). There exists a positive constant M and, for every
T > 0, there exists a positive constant c = c(T ) such that, for 0 < t− τ ≤ T , x,ξ ∈
RN , the following estimates hold

e−Md(x,ξ )2/(t−τ)

c|B
(
x,
√

t− τ
)
|
≤ ΓA (t,x;τ,ξ )≤ ce−d(x,ξ )2/M(t−τ)

|B
(
x,
√

t− τ
)
|
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|XiΓA (t, ·;τ,ξ )(x)| ≤ ce−d(x,ξ )2/M(t−τ)

(t− τ)−1/2|B
(
x,
√

t− τ
)
|−1

∣∣XiX jΓA (t, ·;τ,ξ )(x)
∣∣+ |∂tΓA (·,x;τ,ξ )(t)| ≤ ce−d(x,ξ )2/M(t−τ)

(t− τ)|B
(
x,
√

t− τ
)
|

where |B(x,r) | denotes the Lebesgue measure of the purely spatial d-Carnot-
Carathéodory ball in RN .

We explicitly note that this estimate is analogous to the estimate (20) for the
Komogorov equation, but here the distance in [0,T ]×RN splits in the sum of a
purely spatial one and a purely temporal one. Hence in this case

d2 ((x, t),(ξ ,τ))
2

M (t− τ)
≤ d (x,ξ )2

M (t− τ)
+C.

allowing to discard the temporal part of the distance in the estimate.
As a main step in the proof of these bounds, they first consider constant coeffi-

cients operators: the point here is to handle carefully the dependence on the matrix
A and obtain uniform estimates, in the ellipticity class of the matrix A. To prove
these uniform bounds, in [19] the authors exploited direct methods and the previous
results in [23], [24]. While in [28] the authors have followed as close as possible
the techniques of [66], the main new difficulties being the following: first, they have
to take into account the dependence on the matrix A, getting estimates depending
on A only through the number λ ; second, the estimates have to be global in space,
while in [66] they work on a compact manifold; third, they need estimates on the
difference of the fundamental solutions of two operators which have no analogue in
[66]. The procedure is technically involved, it makes use of the uniform estimates
[19] on groups, and a crucial role is played by the Rothschild-Stein lifting theorem
[98].

Once obtained the uniform estimates for the model operator with constant co-
efficients, one can apply the Levi parametrix method and establish existence and
Gaussian bounds for the fundamental solution of the operators with variable Hölder
continuous coefficients ai j.

Theorem 2.3 (Existence of a fundamental solution). Under the above assump-
tions, there exists a global fundamental solution ΓA(t,x;τ,ξ ) for LA in RN+1, with
the properties listed below.

(i) ΓA is a continuous function away from the diagonal of RN+1×RN+1; ΓA(t,x;τ,ξ )=

0 for t ≤ τ. Moreover, for every fixed ζ ∈RN+1, ΓA(·;ζ )∈C2,α
loc (R

N+1\{ζ}), and
we have

LA (ΓA(·;ζ )) = 0 in RN+1 \{ζ}.

(ii) For every ψ ∈C∞
0 (RN+1), the function w(z) =

∫
RN+1 ΓA(z;ζ )ψ(ζ )dζ belongs to

the class C2,α
loc (R

N+1), and we have
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LAw =−ψ in RN+1.

(iii) Let µ ≥ 0 and T2 > T1 be such that (T2−T1)µ is small enough. Then, for every
f ∈Cβ ([T1,T2]×RN) (where 0 < β ≤ α) and g ∈C

(
RN
)

satisfying the growth
condition | f (x, t)|, |g(x)| ≤ c exp(µ d(x,0)2) for some constant c > 0, the func-
tion

u(x, t) =
∫
RN ΓA(t,x;T1,ξ )g(ξ )dξ +

∫
[T1,t]×RN ΓA(t,x;τ,ξ ) f (τ,ξ )dτdξ ,

x ∈ RN , t ∈ (T1,T2], belongs to the class C2,β
loc ((T1,T2)×RN)∩C([T1,T2]×RN).

Moreover, u is a solution to the following Cauchy problem

LAu =− f in (T1,T2)×RN , u(·,T1) = g in RN

The proof follows the same ideas of the analogous presented in the previous
section. The parametrix function is built starting from the fundamental solution Γw
of the constant coefficient operator

Lw =
m

∑
i, j=1

ai j(w)(t,x)XiX j−∂t

2.3 Fundamental solution of more general operators

Operators in the form of sum of squares of Hörmander vector fields with drift

L =
m

∑
j=1

X2
j −X0 (22)

write in the form (1) as A is the m×m identity matrix. Kogoj and Lanconelli consider
this kind of operators in in [67], under the assumption that every pair of points
(t,x) and (τ,ξ ) with t < τ can be joined by a Lipschitz path γ which solves almost
everywhere the non-autonomous ODE

γ
′(s) =

m

∑
i=1

βi(s)Xi(γ(s))+β0(s)X0(γ(s)) (23)

with β0(s) ≥ 0 for almost every s. In the article [67], Kogoj and Lanconelli give a
list of examples of operators satisfying (23), that include, among other examples,
Kolmogorov operators, as well as heat operators with smoot coefficients. For this
family of operators, they prove the existence of a fundamental solution Γ (x, t,y,s),
which is strictly positive in the set

{
(x, t) ∈ RN+1 | t > s

}
, and Gaussian upper

bounds for Γ . They also prove mean value formulas and Harnack inequalities for
the positive solutions of Lu = 0.
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Based on the Harnack inequality proved in [67], and on the trhansaltion invari-
ance, Pascucci and Polidoro prove in [92] sharp lower bounds for the fundamen-
tal solution of operators satisfying (23). More recently, the method used in [92]
has been extended in [38] to the study of Hormander opeerators that do not sat-
isfy (23). For instance, the operator L = ∂ 2

x + x2∂y + ∂t is considered in two space
variables. The fundamental solution Γ = γ(x,y, t,ξ ,η ,τ) is supported in the set{
(x,y, t) ∈ R3 | t > τ,y > η

}
, then no Gaussian estimates can be proved for this

example. On the other hand, upper and lower bound have been proved by combin-
ing PDE methods and Malliavin calculus.

3 Balls, Mean Value Formulas and Potential Theory

An important aspect in the study of the geometric analysis associated with many of
the PDEs discussed so far is the investigation of the underlying geometric properties
naturally associated to these PDEs. Starting from the celebrated papers of Bony
[25] and of Nagel, Stein, Wainger [88], it became clear that the properties of the
exponential maps associated with the smooth vector fields play a crucial role in
understanding the equivalence of the distances of the spaces. This notion has been
weakened by Lanconelli and Morbidelli [73] to the notion of quasi exponential for
Lipschitz continuous vector fields. Then they proved a Poincaré inequality under a
ball box type assumption.

A complementary point of view, largely adopted by Lanconelli, is to choose the
level sets of the fundamental solution as privileged class of balls for the operator.
The main advantage of this perspective is that the level sets of the fundamental solu-
tion reflect the main properties of the operator, and in particular they give informa-
tion on the directions of propagation, allowing to express in a natural and intrinsic
way the Poincaré inequality and the Potential Theory results, properties which are
classically expressed on the balls of the metric.

The first results extending the mean-value formulas from the classical Laplace
setting to the parabolic one are due to Pini [93], Watson [108], Fabes and Garo-
falo [54], Lanconelli and Garofalo [60] and [61]. In the sub-Riemannian setting, a
mean value theorem for sums of squares of vector fields has been proved by Hoh
and Jacob [64], Citti, Garofalo and Lanconelli [41], while the formula for general
Kolmogorov type operators of type (1) is due to Lanconelli and Pascucci [75]. It has
been proved in [59], [33], [21] that there is a strict relation between the existence of
representation formulas and the Poincaré inequality, which indeed are equivalent in
some special cases.

The use of asymptotic average operators in the characterization of classical sub-
harmonic functions has a long history, starting with the papers [9] of Blaschke,
[94] of Privaloff, [6] of Beckenbach and Radó, up to the recent monograph [2] of
Armitage and Gardiner. This direction of research has been deeply developed in
the framework of Carnot groups by Bonfiglioli, Lanconelli and Uguzzoni in the
monograph [21], and then by Bonfiglioli and Lanconelli, who obtained new results



The role of fundamental in Potential and Regularity Theory 13

concerning with: Harnack-Liouville type theorems [11]; characterizations of sub-
harmonicity [13] (see also the very recent paper [17]); average formulas and repre-
sentation theorems [17]; formulas of Poisson & Jensen type; maximum principles
for open unbounded sets [12]; the Dirichlet problem with Lp boundary data and the
Hardy spaces associated with them [14]; the Eikonal equation and Bôcher-type the-
orems for the removal of singularities [15]; convexity properties of the mean-value
formulas with respect to the radius [18]; Gauss-Koebe and Montel type normality
results [5].

Finally we quote some results of Lanconelli [72], Abbondanza and Bonfiglioli
[1], Kogoj, Lanconelli and Tralli [68], Kogoj and Tralli [69], who characterized the
set on which a mean value formula can be proved as the level sets of the fundamental
solution.

3.1 Almost exponential maps and Poincaré inequality

The most classical result on exponential mappings and properties of control balls is
due to Nagel Stein Wainger [88].

An abstract version of these notions was provided in the paper [73] for a family
X1, . . . ,Xm of Lipschitz continuous vector fields in RN . Indeed the authors intro-
duced the notion of controllable almost exponential map and they showed that, if
a suitable ball-box inclusion holds, then one can get a proof of a Poincaré-type in-
equality for the family X1, . . . ,Xm. Next we will describe such result.

Definition 3.3. Let Ω ⊂ RN be an open set and let Q be an open neighborhood of
the origin in RN . We say that a C1 map E : Ω ×Q→ RN is an almost exponential
map if:

(i) the map Q 3 h 7→ E(x,h) is one-to-one for each x ∈Ω ;
(ii) there is C0 > 1 such that

0 <C−1
0

∣∣∣det
∂E
∂h

(x,0)
∣∣∣≤ ∣∣∣det

∂E
∂h

(x,h)
∣∣∣≤C0

∣∣∣det
∂E
∂h

(x,0)
∣∣∣ for all h ∈ Q.

An almost exponential map is controllable if there are a hitting time T > 0 and a
control function γ : Ω ×Q× [0,T ]→ RN such that:

(iii) for each (x,h) ∈ Ω ×Q, the path t 7→ γ(x,h, t) is subunit and it satisfies
γ(x,h,0) = x and γ(x,h,T (h)) = E(x,h) for some T (h)≤ T ;

(iv) For each h ∈ Q and t ∈ [0,T (h)], the map x 7→ γ(x,h, t) is one-to-one, of
class C1 and it satisfies for some C0 > 1∣∣∣det

∂γ

∂x
(x,h, t)

∣∣∣≥C−1
0 for all x ∈Ω , h ∈ Q and t ∈ [0,T (h)].

Let us recall also the local doubling condition for the Lebesgue measure of control
balls: for any compact K there is CD and r0 > 0 such that
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|B(x0,2r)| ≤CD|B(x0,r)| for all x0 ∈ K and r ≤ r0.

Now we are ready to give a condition wich ensures the Poincaré inequality.

Theorem 3.4 ([73], Theorem 2.1). Let X1, . . . ,Xm be a family of locally Lipschitz-
continuous vector fields in RN . Assume that the Lebesgue measure of Carnot–
Carathéodory balls is locally doubling. Let K ⊂ RN be a compact set and let
B = B(x0,r) be a ball such that x0 ∈K and r≤ r0. Assume that for a suitable C0 > 0
there are open sets Q⊃{0}, Ω ⊂B and an almost exponential map E : Ω×Q→RN

such that
1) |Ω |>C−1

0 |B|;
2) The map E is controllable with a control γ having hitting time T ≤C0r;
3) we have the inclusion B⊂ E(x,Q) for each x ∈Ω .

Then, there is a constant C1 depending on C0 and CD such that∫
B
|u(x)−uB|dx≤C1r

∫
C1B
|Xu(x)|dx for all u ∈C1(C1B) (24)

Remark 3.4. Here uB denote the standard average on the ball B:

uB =
1
|B|

∫
B

u(y)dy.

In the next section we will give a different definition of mean, to be used when the
vector fields are associated to an operator.

For the proof we refer to the original paper [73]. Here we note that the method
has been tested successfully in the case of Hörmander vector fields, with regular
and non regular coefficients and on a class of vector fields introduced by Franchi
and Lanconelli [57, 58] which have the form

X1 = ∂x1 , X2 = λ2(x1)∂x2 , . . . , Xn = λn(x1, . . . ,xn−1)∂xn ,

where the functions λ j satisfy suitable assumptions. We refer to the discussion in
[73, Section 3] for the proof that these vector fields fit in the framework of con-
trollable almost exponential maps. Further results with minimal assumptions on the
coefficients are due to [85], and with a slightly different technique to [30].

3.2 Mean value formulas on level sets and Poincaré inequality

We will present here mean value formulas, which have been constructed for different
operators: in the subelliptic setting: by Citti, Garofalo and Lanconelli for sum of
squares [41], Lanconelli and Pascucci for Kolmogorov-type operators [75]. The first
corollary will be a Poincaré formula, to be compared with the one established in the
previous section.

Let us consider a particular operator of type (1)
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LA :=
N

∑
i, j=1

ai jXiX j +X0 (25)

for a constant coefficient matrix (ai j) satisfying (2). We will denote

Ωr(x) :=
{

y ∈ RN : Γ (x,y)> 1/r
}
,

so that ∂Ωr(x) will be the level set of Γ .
Let Ω ⊆ RN be an open set and suppose u is u.s.c. on Ω . For every fixed α > 0,

and every x ∈ RN and r > 0 such that Ωr(x) ⊂ Ω , we define the Surface Mean mr
and the Solid Mean Mr for a function u:

mr(u)(x) =
∫

∂Ωr(x)
u(y)

ai j(y)XiΓx(y)X jΓx(y)
|∇EΓx(y)|

dσ(y), (26)

Mα
r (u)(x) =

α +1
rα+1

∫ r

0
ρ

α mρ(u)(x)dρ, (27)

where ∇E denotes the Euclidean gradient, and Γx(y) = Γ (x,y). Here σ denotes the
Hausdorff (N−1)-dimensional measure in RN . We also denote

Ir(x) =
α +1
rα+1

∫ r

0
ρ

α

(∫
Ωρ (x)

ai jXiΓ (x,y)X ju(y)dy
)

dρ, (28)

The following theorem, for the special case X0 = 0 has been proved in [41],
A general formula has been established by [75] for Kolmogorov equations, which
redudes to the following one, when divX0 = 0.

Theorem 3.5. Then, for every function u of class C2 on an open set containing
Ωr(x), we have the following mean value formulas:

u(x) = mr(u)(x)−
∫

Ωr(x)
ai jXiΓ (x,y)X ju(y)dy, u(x) = Mα

r (u)(x)− Ir(x) (29)

In [43] the authors remarked that the Poincaré inequality can be obtained by
means of the mean value formula for a very special class of vector fields, with
minimal regularity of the coefficients in the same spirit of [30] and [85]. Precisely
when X0 = 0, and there exists a continuous function ϕ such that

Xi = ∂xi − xi+n∂x2n , Xn = ∂xn +2ϕ(x)∂x2n ,Xi+n = ∂xi+n + xi∂x2n , (30)

i = 1, . . . ,n−1. These vector fields satisfy the Hörmander condition, and ϕ is con-
tinuous, so that there is a CC distance associated to these vector fields.

Theorem 3.6. Let Ω be an open set. Assume that the function ϕ and u are Lipschitz
continous defined on Ω with respect to the CC distance associated to these vector
fields. For every compact set K ⊂Ω there exist positive constants C1,C2 with C2 > 1
(depending continuosly on the Lipschitz constant of ϕ) such that if ΩC2r(x̄)⊂ K, we
have
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Ωr(x̄)
|u(x)−uΩr(x̄)|dx≤C1r

∫
ΩC2r(x̄)

|∇u|

3.3 L-subharmonicity and average operators

As we shall see soon, mean value formulas naturally allow the characterizations of
the L -subharmonic functions, and the derivation of an in-depth Potential Theory
for L .

Let

L :=
N

∑
i, j=1

∂xi(ai, j(x)∂x j) = div(A(x)∇) (31)

be a linear second order PDO in RN , in divergence form, with C∞ coefficients and
such that the matrix A(x) := (ai, j(x))i, j≤N is symmetric and nonnegative definite at
any point x = (x1, . . . ,xN) ∈ RN . The operator L is (possibly) degenerate elliptic.
However, we assume that L is not totally degenerate at every point. Precisely, we
assume that the following condition holds: there exists i∈ {1, . . . ,N} such that ai,i >
0 on RN . This condition, together with A(x) ≥ 0, implies the well-known Picone’s
Maximum Principle for L .

A function h will be said L -harmonic in an open set Ω ⊆ RN if h ∈C2(Ω ,R)
and L h = 0 in Ω . An upper semicontinuous function (u.s.c. function, for short)
u : Ω → [−∞,∞) will be called L -subharmonic in Ω if:

1. the set Ω(u) := {x ∈ Ω |u(x) > −∞} contains at least one point of every (con-
nected) component of Ω , and

2. for every bounded open set V ⊂ V ⊂ Ω and for every L -harmonic function
h ∈C2(V,R)∩C(V ,R) such that u≤ h on ∂V , one has u≤ h in V .

We shall denote by S (Ω) the family of the L -subharmonic functions in Ω .
It is well known that the subharmonic functions play crucial roles in Poten-

tial Theory of linear second order PDEs (just think about Perron’s method for the
Dirichlet problem) as well as in studying the notion of convexity in Euclidean and
non-Euclidean settings.

Our main assumption on L is that it is C∞-hypoelliptic in every open subset of
RN . We further assume that, in the spirit of the rest of the present paper, L admits
a nonnegative global fundamental solution

RN×RN \{x = y} 3 (x,y) 7→ Γ (x,y) ∈ R,

with pole at any point of the diagonal {x = y} of RN and vanishing at infinity.
We are then able to define suitable mean value operators on the level sets of Γ .
We explicitly remark that study of the integral operators related to general PDOs

considered in this paper is complicated by the presence of non-trivial kernels. For
instance, when L in (31) is a sub-Laplacian on a stratified Lie group G, the kernels
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appearing in the relevant mean-integrals cannot be identically 1, unless G is the
usual Euclidean group (RN ,+), as it is proved in [15].

Definition 3.6 (Mean-Integral Operators). Let x ∈ RN and let us consider the
functions, defined for y 6= x,

Γx(y) := Γ (x,y), Kx(y) :=

〈
A(y)∇Γx(y),∇Γx(y)

〉
|∇Γx(y)|

.

We will call surface mean integral operator and solid mean integral operator, the
two mean operators mr and Mr defined in (26) and (27), respectively. Furthermore,
for every x ∈ RN and every r > 0, we set

qr(x) =
∫

Ωr(x)

(
Γx(y)−

1
r

)
dy, Qr(x) =

α +1
rα+1

∫ r

0
ρ

α qρ(x)dρ,

ωr(x) =
1

α rα+1

∫
Ωr(x)

(
rα −Γ

−α
x (y)

)
dy.

Remarkable mean-value formulas generalizing the classical Gauss-Green formulas
for Laplace’s operator and the ones in Theorem 3.5 hold true also in this more
general setting:

Theorem 3.7 (Mean-Value Formulas for L ). Let mr,Mα
r be the average opera-

tors in Definition 3.6. Let also x ∈ RN and r > 0.
Then, for every function u of class C2 on an open set containing Ωr(x), we have

the following L -representation formulas:

u(x) = mr(u)(x)−
∫

Ωr(x)

(
Γ (x,y)− 1

r

)
L u(y)dy, (32)

u(x) = Mα
r (u)(x)−

α +1
rα+1

∫ r

0
ρ

α

(∫
Ωρ (x)

(
Γ (x,y)− 1

ρ

)
L u(y)dy

)
dρ. (33)

We shall refer to (32) as the Surface Mean-Value Formula for L , whereas (33) will
be called the Solid Mean-Value Formula for L .

Before stating our main theorem, we need two definitions. With the same notations
as in the previous paragraph, an u.s.c. function u defined on an open subset Ω of RN

will be called m-continuous in Ω if

lim
r→0

mr(u)(x) = u(x), for every x ∈Ω .

Analogously, u is said to be Mα -continuous in Ω if lim
r→0

Mα
r (u)(x) = u(x), for every

x ∈Ω .
Finally, let I ⊆R be an interval and suppose that ϕ : I→R is a strictly monotone

continuous function. We say that f : I→ R is ϕ-convex if

f (r)≤ ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

f (r1)+
ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
f (r2),
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for every r1,r,r2 ∈ I such that r1 < r < r2.

We are ready to present our main result (see [17, 18]). This generalizes previ-
ous results in [13]; in the case of sub-Laplacians on Carnot groups, the paramount
role of mean value operators is shown in [1, 5, 11, 12, 14, 15, 16]; see also the
comprehensive monograph [21].

Theorem 3.8 (Characterizations of Subharmonicity). Suppose L satisfies the
above axioms. Let Ω be an open subset of RN and let u : Ω → [−∞,∞) be an u.s.c.
function such that Ω(u) = {x : u(x) > −∞} contains at least one point of every
component of Ω .

Let qr,Qr,ωr be as in Definition 3.6. Let also R(x) := sup{r > 0 : Ωr(x)⊆Ω}.
Then, the following conditions are equivalent:

1. u ∈S (Ω) with respect to L .
2. u(x)≤ mr(u)(x), for every x ∈Ω and r ∈ (0,R(x)).
3. u(x)≤Mα

r (u)(x), for every x ∈Ω and r ∈ (0,R(x)).
4. It holds that

limsup
r→0

mr(u)(x)−u(x)
qr(x)

≥ 0, for every x ∈Ω(u).

5. It holds that

limsup
r→0

Mα
r (u)(x)−u(x)

Qr(x)
≥ 0, for every x ∈Ω(u).

6. u is m-continuous in Ω , and r 7→ mr(u)(x) is monotone increasing on (0,R(x)),
for every x ∈Ω .

7. u is Mα -continuous in Ω , and r 7→Mα
r (u)(x) is monotone increasing on (0,R(x)),

for every x ∈Ω .
8. u is m-continuous in Ω , and

Mα
r (u)(x)≤ mr(u)(x),

for every x ∈Ω and every r ∈ (0,R(x)).
9. u is m-continuous in Ω , and

liminf
r→0

mr(u)(x)−Mα
r (u)(x)

ωr(x)
≥ 0, for every x ∈Ω(u).

10. u is Mα -continuous in Ω , u ∈ L1
loc(Ω) and L u ≥ 0 in the weak sense of distri-

butions.
11. u is m-continuous and the map r 7→ mr(u)(x) is

1
r

-convex on (0,R(x)), for every

x ∈Ω (or, equivalently, for every x ∈Ω(u));
12. u is Mα -continuous and, for every x ∈ Ω (or, equivalently, for every x ∈ Ω(u)),

the map r 7→Mα
r (u)(x) is

1
rα+1 -convex on (0,R(x)), for some (or for every) α >

0;
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Furthermore, if u ∈S (RN) we have the following results:

13. the functions x 7→ mr(u)(x), Mα
r (u)(x) are L -subharmonic in RN , finite valued

and continuous.
14. Let µu be the L -Riesz measure of u; the maps r 7→ mr(u)(x) and r 7→Mα

r (u)(x)
can be prolonged with continuity up to r = 0 if and only if x ∈Ω(u).
Furthermore, for every x ∈Ω and r ∈ (0,R(x)), one has the following represen-
tation formulas (of Poisson-Jensen type):

u(x) = mr(u)(x)−
∫ r

0

µu(Ωρ(x))
ρ2 dρ

= mr(u)(x)−
∫

Ωr(x)

(
Γ (x,y)− 1

r

)
dµu(y),

u(x) = Mα
r (u)(x)−

∫ r

0

α +1
ρα+2

(∫
Ωρ (x)

(
fα(ρ)− fα

( 1
Γ (x,y)

))
dµu(y)

)
dρ

= Mα
r (u)(x)−

α +1
rα+1

∫ r

0
ρ

α

(∫
Ωρ (x)

(
Γ (x,y)− 1

ρ

)
dµu(y)

)
dρ.

When x /∈ Ω(u), all the sides of these formulas are −∞, and this happens if and
only if µu({x})> 0.

The equivalences (1)-to-(9) do not require the hypoellipticity of L , which is only
used in (10)-to-(14) (requiring Riesz-type representation results).

We observe that Theorem 3.8 provides new insight on the Potential Theory for
operators in divergence form, which are not necessarily in the form of Hörmander
sums of squares, nor left invariant on some Lie group (see [17, 18]).

Finally we mention some results of Lanconelli [72], Abbondanza and Bonfiglioli
[1], Kogoj, Lanconelli and Tralli [68], Kogoj and Tralli [69]: in these papers, it is
proved, for several classes of PDOs, that the sets on which a mean value formula can
be obtained are precisely the level sets of the fundamental solution. For instance the
inverse mean value theorem for L states the following: let K0(y) be as in Definition
3.6 and let us set dν(y) := K0(y)dy; let D be a bounded open neighborhood of 0
such that

u(0) =
1

ν(D)

∫
D

u(y)dν(y), (34)

for every u which is L -harmonic and ν-integrable on D. Then, necessarily, D =
Ωr(0) for some r > 0. More precisely, it suffices to suppose that (34) holds for the
family of the L -harmonic functions on D of the form D 3 y 7→ Γ (y,x), for x /∈ D.

4 Global Regularity Results

Interior Schauder and Lp estimates can be obtained as a direct consequence of exis-
tence of the fundamamental solution. A much more delicate problem is the problem
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of global regularity results, namely regularity on the whole space, or regularity at
the boundary.

We provide here a couple of results, obtained using potential theory and existence
of the fundamental solution, proved in the previous section.

4.1 A first regularity result at the boundary

An essential play in study of the existence and regularity theory of the equation
Lu = f where L is the operator in (8) is the derivation of the Schauder estimates
in terms of weighted interior norms. Such apriori estimates allow to extends the
results of potential theory to the class of L having Hölder continuous coefficients
and to establish the solvability of the Dirichlet problem in the generalized sense.
For continuous boundary values and a suitably wide class of bounded open set the
proof of solvability of the Dirichlet problem can be achieved entirely with interior
estimates.

Interior Schauder’s estimates for the Kolmogorov operator (4) are proved in
Shatyro [99], for the operator (8) in the homogeneous case by Manfredini in [79]
and in the non homogeneous case in Di Francesco and Polidoro [52]. In Lunardi
[77] global estimates with respect to the spatial variable are proved for operator (8)
with constant coefficients ai j.

We denote by Cα
d (Ω) the space of the Hölder continuous function whose norms

| · |α,d;Ω are weighted by the distance to the boundary of the bounded open set Ω .
Schauder’s type estimate can be proved using classical arguments, based on a rep-
resentation formula for the second derivatives of smooth functions in terms of the
fundamental solution of the operator and on its bounds in Theorem 2.1.

Theorem 4.9. (Schauder interior estimates). Let Ω be a bounded open set, f ∈
Cα

d (Ω), and let u be a bounded function belonging to C2+α

loc (Ω) such that Lu = f in
Ω . Then u ∈C2+α

d (Ω) and there exists a positive constant c, independent of u, such
that

|u|2+α,d;Ω ≤ c(sup
Ω

|u|+ |d2 f |α,d;Ω ).

Here |d2 f |α,d;Ω denotes the following norm :

|d2 f |α,d;Ω = sup
z∈Ω

d2
z | f (z)|+ sup

z,ζ∈Ω ,z6=ζ

d2+α

z,ζ
| f (z)− f (ζ )|

d(z,ζ )α

where dz = infw∈Ω d(z,w) and dz,ζ = min{dz,dζ}.
And
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|u|2+α,d;Ω = sup
z∈Ω

|u(z)|+
m

∑
i=1

sup
z∈Ω

dz|∂xiu(z)|+ sup
z,ζ∈Ω ,z 6=ζ

d2+α

z,ζ
|u(z)−u(ζ )|

d(z,ζ )α

+
m

∑
i=1

sup
z,ζ∈Ω ,z 6=ζ

d2+α

z,ζ
|∂xiu(z)−∂xiu(ζ )|

d(z,ζ )α
+ |d2X0u|α,d;Ω +

m

∑
i, j=1
|d2

∂
2
xix j

u|α,d;Ω .

(35)
Using Schauder apriori estimates we can extend potential theory to the operator

L with Hölder continuous coefficients. In fact, L endows RN+1 with a structure of
β -harmonic space (according to the classical definition in [47]). Precisely, if U is
a bounded subset of RN+1 the space (U,HL) of L-harmonic C2+α

loc (U) functions
satisfies the axiom of positivity and separation, the Doob convergence property and
finally the property of resolutivity. In particular the last axiom requires that there
exists a basis (for the Euclidean topology) of bounded open set V called HL-regular
set such that the Dirichlet problem{

Lu = 0 in V,
u = ϕ in ∂V, ϕ ∈C(∂V )

(36)

is univocally solvable. We cannot expect that the parabolic cylinders are HL-regular
set. A geometric condition on ∂V ensuring the solvability of (36) is a generaliza-
tion of the Poincaré exterior ball condition. Precisely, we assume that for every
(x0, t0) ∈ ∂V there exists a L-non-characteristic outer normal ν ∈ RN+1 such that
Beucl((x0, t0)+ν , |ν |)⊂ RN+1 \V and

m

∑
i, j=1

ai j(x0, t0)〈ν ,Xi〉〈ν ,X j〉> 0.

The construction of a basis of HL-regular sets is proved using an argument due a
Bony [25] and the method of continuity.

The general potential theory ensures the existence of a generalized solution in
the sense of Perron-Wiener-Brelot-Bauer of the Dirichlet problem in an arbitrary
bounded open set Ω . This solution assumes the boundary data at every L-regular
point. A point (x0, t0) is L-regular if there exists a local barrier at (x0, t0).

Theorem 4.10. [79] (Existence of a generalized solution). Let Ω be a bounded open
set, f ∈Cα(Ω) and ϕ ∈C(∂Ω). Then, there exists a solution u∈C2+α

loc (Ω) of Lu= f
in Ω such that lim(x,t)→(x0,t0) u(z) =ϕ(x0, t0) for every L-regular point (x0, t0)∈ ∂Ω .

Geometric properties of the boundary determine the continuous assumption of
boundary values. In the paper [79] the author introduce an exterior cone type condi-
tion which extends the classical Zaremba criteria for the regularity of the boundary
points and a boundary condition for the Kolmogorov operator in R3 proved in [89].
Besides, a geometric condition ensures the regularity for the L-characteristic bound-
ary point, when the Fichera function X0ν(x0, t0) is positive definite.

Related results on the regularity of boundary points for the Dirichlet problem are
also proved in [76], [105], [106], [104].
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4.2 A global regularity result in Lp Spaces

We conclude this section with Lp-regularity results on the whole space for degener-
ate Ornstein-Uhlenbeck operators obtained by Bramanti, Cupini, Lanconelli, Priola
in [31] (constant coefficients) and [32] (variable coefficients).

The class of operators considered in [31] is

A =
p0

∑
i, j=1

ai jXiX j +X0,

where 1 ≤ p0 ≤ N, Xi = ∂i and X0 = ∑
N
i, j=1 bi jxi∂x j . Here A = (ai j)1≤i, j≤p0 and

B = (bi j)1≤i, j≤N are constant coefficient matrices. Moreover, B has the structure
described in (14) and A satisfies the ellipticity assumption (2), with p0 in place of
m.

The evolution operator corresponding to A , that is

LA = A −∂t ,

is a Kolmogorov-Fokker-Planck ultraparabolic operator, studied in Section 2.1. For
this operator, Lp global estimates on the strip S = RN× [−1,1] have been proved in
[31].

Theorem 4.11. For every p ∈ (1,∞) there exists a constant c > 0 such that∥∥∥∂
2
xix j

u
∥∥∥

Lp(S)
≤ c‖Lu‖Lp(S) for i, j = 1,2, ..., p0, (37)

for every u ∈ C∞
0 (S) . The constant c depends on p,N, p0, the matrix B and the

number λ in (2).

As a by-product of the above result, global Lp(RN) estimates are deduced for the
operator A .

Theorem 4.12. For every p∈ (1,∞) there exists a constant c> 0, such that for every
u ∈C∞

0
(
RN
)

one has:∥∥∥∂
2
xix j

u
∥∥∥

Lp(RN)
≤ c
{
‖A u‖Lp(RN) +‖u‖Lp(RN)

}
for i, j = 1,2, ..., p0. (38)

We point out that the estimates of [98] for these type of operators only allow to get
local estimates in Lp, while the results presented here are global.

The same authors prove in [32] similar estimates in the case of variable coef-
ficients ai j, entries of the matrix A. Precisely, if ai j are uniformly continuous and
bounded functions in RN , estimates analogous to (37) (with S = RN × [−T,T ], for
some T > 0) and (38) still hold true. The proofs of the results in [32] rely on a freez-
ing argument, that allows to exploit results and techniques contained in [31], and
useful estimates proved in [78] and [52].
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Let us describe now the general strategy of the proof of Theorem 4.11, as well as
the main difficulties.

Since B has the structure described in (14), with the ∗-blocks possibly not null,
the operator L is left invariant with respect to a suitable Lie group of translations,
but, in general, is not homogeneous. A basic idea is that of linking the properties of
L to those of another operator of the same kind, which not only is left translation
invariant, but is also homogeneous of degree 2 with respect to a family of dilations.
Such an operator L0 always exists under our assumptions by [78], and has been
called “the principal part” of L. Note that the operator L0 fits the assumptions of
Folland’s theory [55]. The authors exploit the fact that, by results proved in [52], the
operator L has a fundamental solution Γ with some good properties. First of all, Γ

is translation invariant and has a fast decay at infinity, in space; this allows to reduce
the desired Lp estimates to estimates of a singular integral operator whose kernel
vanishes far off the pole. Second, this singular kernel, which has the form η ·∂ 2

xix j
Γ

where η is a radial cutoff function, satisfies “standard estimates” (in the language
of singular integrals theory) with respect to a suitable “local quasisymmetric qua-
sidistance” d, which is a key geometrical object in the paper under consideration.
Namely,

d (z,ζ ) =
∥∥ζ
−1 ◦ z

∥∥ (39)

where ζ−1 ◦ z is the Lie group operation related to the operator L, while ‖·‖ is a
homogeneous norm related to the principal part operator L0 (recall that L does not
have an associated family of dilations, and therefore does not have a natural homo-
geneous norm). This “hybrid” quasidistance does not fulfill enough good properties
in order to apply the standard theory of “singular integrals in spaces of homogeneous
type” (in the sense of Coifman-Weiss [46]). Hence, an ad hoc theory of singular in-
tegrals in nonhomogeneous spaces (see [27]) and a nontrivial covering argument are
applied to get the desired Lp bound.

5 Non linear curvature equations

We conclude this review studying non linear PDE’s. The standard prototype of non
linear equations have always been minimal surfaces and curvature equations. Also
in the setting of CR manifolds and subriemannian spaces, curvature equations can be
chosen as the prototype of non linear equations. These equations describe the curva-
ture or the evolution of a graph, with respect to vector fields, (or a metric) dependent
on the graph itself. This is why curvature equation in this setting can be expressed in
the form (1), where the coefficients σi j = σi j(u,Xiu) of the vector fields depend on
the solution or its intrinsic derivatives. Equations of this type naturally arise while
studying curvature equations in CR manifolds, called Levi Equation ([39], [84]) ,
Monge-Ampere equation ([102, 97]) or minimal graphs in the Heisenberg group
(see for instance [34], [50], [86]), as well as in mathematical finance ([44, 53] ).
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Here we will focus in particular on Levi equations, for which much of the tech-
nique has been developed.

5.1 Regularity results for the Levi equations

The Levi curvatures of a graph is the formal complex analogous of the curvature
operator in RN . Namely it is the determinant of Levi form of a real hypersurface
in Cn+1 (or elementary symmetric functions of it). We can always assume that the
surface M is the graph of a C2 function u : Ω → R, where Ω ⊆ R2n+1 is open. We
identify R2n+1×R with Cn+1, and denote

z = (x,y) = (z1, . . . ,zn,zn+1), z j = x2 j−1 + ix2 j,1≤ j ≤ n, zn+1 = x2n+1 + iy.

We let
γ(u) = {(x,y) ∈Ω ×R : y = u(x)} ≡ graph of u.

Calling f (x,y) = y−u(x), the Levi form associated with f at the point p = (x,u(x))
is the following Hermitian form:

Lp(u,ζ ) =
n+1

∑
j,k=1

f j,k̄(p)ζ jζ̄k, ζ ∈ TC
p (γ(u)),

where TC
p γ(u) denotes the complex tangent space to the graph of u. If we de-

note by h the complexified second fundamental form, it turns our that hp(ζ , ζ̄ ) =
1

|∂ f (p)|
Lp(u,ζ ) for all ζ ∈ TC

p (γ(u)). Let λ1(p), . . . ,λn(p) be the eigenvalues of h.

For 1≤ m≤ n, σ (m) denotes the m-th elementary symmetric function and

K(m)
p (∂D) :=

1
( n

m )
σ
(m)(λ1, . . . ,λn),

we define the m−th Levi curvature operator as

L (m)(u)(x) := K(m)
p (γ(u)), x ∈Ω ,

(see the papers by Bedford and Gaveau [7], by Tomassini [103], and by Lanconelli
Montanari [84]).

The Levi form has been introduced by E.E. Levi and used by Oka, Bremmer-
man and Norgouet in order to characterize domains of holomorphy. The first ex-
istence results were obtained in the Levi flat case, i.e. null Levi form, by Bedford
and Gaveau [7] and by Bedford and Klingenberg [8]. They used a purely geometric
approach, which does not work in the non Levi flat case. Slodkowski and Tomassini
in [100] introduced a PDE’s approach in studying boundary value problems for the
prescribed Levi curvature equation with curvature different from zero at any point
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and proved L∞ a-priori bound for the gradient. However the degeneracy of the equa-
tion did not allow the mentioned authors to obtain internal regularity with standard
instruments. Almost ten years later the work by Slodkowski and Tomassini, in [39]
G. Citti recasted the problem in dimension n = 1 in the set of sum of squares of
vector fields. Precisely, choosing the coefficients of the vector fields Xi = σi j∂x j of
(1) as σi j = δi j for i = 1,2,

σ13(Du) =
ux2 −ux1ux3

1+u2
x3

, σ23(Du) =−
ux1 +ux2ux3

1+u2
x3

and the Levi Curvature operator for n = 1 can be expressed as

L (1) u = (X2
1 u + X2

2 u) (1 + u2
x3
) and [X1 , X2] = −

L (1)u
1 + u2

x3

∂x3 .

This representation tells us that, while prescribing the curvature, we can control
the rank of the Lie algebra generated by the vector fields, allowing to apply to the
equation the theory of subriemannian operators. E. Lanconelli and A. Montanari
studied the problem in full generality (see [84]) proving that L (m) can be written as
follows:

L (m)(u)(x) =
2n

∑
j,k=1

a j,kZ jZk(u), u ∈C2(Ω ,R), Ω ⊂ R2n+1

where

• Z j = ∂x j +a j∂x2n+1 , a j = a j(Du), j = 1, · · · ,2n

• (a j,k) j,k=1,...,2n is symmetric and a j,k = a j,k(Du,D2u).

Then, if j 6= k, we have : Z j,k := [Z j,Zk] = q j,k ∂x2n+1 . When computed on m-strictly
pseudoconvex functions, i.e., on functions satisfying L (k)(u)(x)> 0 for every x∈Ω

and 1≤ k ≤ m, the operator L (m) displays a subelliptic property. Precisely:

• for every x ∈Ω , q j,k(x) 6= 0 for suitable j,k

• the matrix (a j,k(x)) j,k=1,...,2n is strictly positive definite at any point x ∈Ω .

Therefore, if u is m-strictly pseudoconvex, L (m) is elliptic only along the 2n lin-
early independent directions Z j = ∂x j + a j∂x2n+1 ≡ e j + a jen+1, j = 1, . . . ,2n, and
the missing ellipticity direction e2n+1 is recovered by commutation. This commuta-
tion property can be restated as follows:

dim(span{Z j(x),Z j,k(x) : j,k = 1, . . . ,2n}) = 2n+1, for every x ∈Ω .

We would also like to stress that L (m) is a PDO in R2n+1, which is fully nonlinear
if n > 1.
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From the subelliptic properties of L (m) several crucial results follow. Here we
only mention a Strong Comparison Principle and a regularity result.

Theorem 5.13 (STRONG COMPARISON PRINCIPLE). Let u,v : Ω →R, where Ω ⊆
R2n+1 is open and connected. Assume u and v strictly m-pseudoconvex and
(i) u≤ v in Ω , u(x0) = v(x0) at x0 ∈Ω

(ii) L (m)(u)≥L (m)(v) in Ω .
Then u = v in Ω (see [39] for n = 1, [84] for the general case).

Theorem 5.14 (SMOOTHNESS OF CLASSICAL SOLUTIONS).
Let u ∈C2,α(Ω) be a strictly m-pseudoconvex solution to the K-prescribed Levi

curvature equation
L (m)(u) = K(·,u) in Ω .

If K is strictly positive and C∞ in its domain, then u ∈C∞(Ω) (see [40] for n = 1,
[83] for 1≤ m and [81] for the general case 1≤ m≤ n).

Strategy of the proof for n=1 In the low dimensional case, the proof of regular-
ity is based on an ad hoc approximation method, similar to the parametrix method
(see Section 2). The difficult here is the fact that the approximation has to be applied
to the vector fields, not to the metric of the space. Following [98], the approximat-
ing vector fields Xi,w of Xi are obtained via Taylor approximation. The additional
difficulty here is due to the fact that a function differentiable in the direction of
the vectors Xi will not necessarly be differentiable in the direction Xi,w. We explic-
itly note that not even the more recent results of Bramanti Brandolini Manfredini
Pedroni [29] could allow to obtain the result. On the contrary a completely new
approach to singular integrals has been introduced in order to deal with these non
linear vector fields.

Strategy of the proof in higher dimension Since the prescribed Levi cur-
vature equations present formal similarities with the real and complex Monge-
Ampère equations, which are elliptic PDE’s if evaluated on strictly convex and
plurisubharmonic functions, respectively, we would like to briefly recall how the
smoothness follows from the classical Schauder theory for the real Monge-Ampère
equation. The real Monge-Ampère equation in a domain Ω ⊂ Rn is of the form
det(D2u) = f (x,u,Du). If u ∈C2,α(Ω) is a strictly convex solution to this equation,
then the linearized operator L (at u) is elliptic with Cα coefficients, and Du satisfies a
linear uniformly elliptic equation of the type L(Du) = F ∈Cα(Ω). By the classical
Schauder theory, Du ∈ C2,α(Ω). Repeating this argument one proves u ∈ C∞(Ω).
In our case it is not possible to argue in the same way, because the Levi curvature
equations are not elliptic at any point, also when restricted to the class of strictly
pseudoconvex functions. However, in [82] Montanari proved interior Schauder-type
estimates for solutions of Hv = f with H a linear second order subelliptic operator
of the type H = ∑

n
m, j=1 hm jZmZ j with Hölder continuous coefficients and with Z j

first order partial differential operator with C1,α coefficients. This result is obtained
by a non standard freezing method and on the lifting argument by Rothshild and
Stein. The study of the operator H is reduced to the analysis of a family of left
invariant operators on a free nilpotent Lie group, whose fundamental solutions are
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used a parametrix of the operator H, and provides an explicit representation formula
for solutions of the linear equation Hv = f . Once this is established, the strategy to
handle the prescribed m-th Levi curvature equation in higher dimension is to apply
the a priori estimates in [82] to first order Euclidean difference quotients of a strictly
m-pseudoconvex solution u, in order to prove that the function Du has Hölder con-
tinuous second order horizontal derivatives. The smoothness result is then obtain by
a bootstrap argument.

5.2 A negative regularity result

We want to stress that, in dimension n > 1, the classical C2,α solvability of the
Dirichlet problem for the K-prescribed Levi curvature equations is still a widely
open problem. Even though it is possible to give a definition of Lipschitz continuos
viscosity solutions (we refer [83]), these solutions are not expected to be smooth if
the data are smooth. Indeed, very recently, Gutierrez Lanconelli and Montanari [62]
proved the following negative regularity result. To state the theorem, we need some
more notation. With Br we denote the Euclidean ball in R2n+1 centered at the origin
and with radius r, K denote a function of class C∞ defined on the ball (B1×R),
strictly positive and such that s 7→ K(·,s) is increasing. Then, we have the following
result.

Theorem 5.15 (Gutierrez-Lanconelli-Montanari [62]). There exist r ∈ (0,1) and
a pseudoconvex function u ∈ Lip(B̄r) solving

L (n)(u) = K(x,u) in Br,

in the weak viscosity sense and such that

• u 6∈C1(Br) if n = 2
• u 6∈C1,β for any β > 1− 2

n when n > 2.

This equation is the motivation for a number of interesting problems: symmetry
problems and isoperimetric integral inequalities [80] of surfaces with prescribed
Levi curvature, and regularity results of radially symmetric solutions.
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