111 research outputs found

    Evolution of the Stellar-to-Dark Matter relation: separating star-forming and passive galaxies from z = 1 to 0

    Get PDF
    We use measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy lensing within the COSMOS survey to constrain the stellar-to-halo mass relation (SHMR) of star forming and quiescent galaxies over the redshift range z = [0.2, 1.0]. For massive galaxies, M * gsim 1010.6 M ☉, our results indicate that star-forming galaxies grow proportionately as fast as their dark matter halos while quiescent galaxies are outpaced by dark matter growth. At lower masses, there is minimal difference in the SHMRs, implying that the majority low-mass quiescent galaxies have only recently been quenched of their star formation. Our analysis also affords a breakdown of all COSMOS galaxies into the relative numbers of central and satellite galaxies for both populations. At z = 1, satellite galaxies dominate the red sequence below the knee in the stellar mass function. But the number of quiescent satellites exhibits minimal redshift evolution; all evolution in the red sequence is due to low-mass central galaxies being quenched of their star formation. At M * ~ 1010 M ☉, the fraction of central galaxies on the red sequence increases by a factor of 10 over our redshift baseline, while the fraction of quenched satellite galaxies at that mass is constant with redshift. We define a "migration rate" to the red sequence as the time derivative of the passive galaxy abundances. We find that the migration rate of central galaxies to the red sequence increases by nearly an order of magnitude from z = 1 to z = 0. These results imply that the efficiency of quenching star formation for centrals is increasing with cosmic time, while the mechanisms that quench the star formation of satellite galaxies in groups and clusters is losing efficiency

    N-body simulations with generic non-Gaussian initial conditions I: Power Spectrum and halo mass function

    Get PDF
    We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.Comment: 23 pages, 10 figure

    Conservative Constraints on Dark Matter from the Fermi-LAT Isotropic Diffuse Gamma-Ray Background Spectrum

    Full text link
    We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded.Comment: 11 pages, 5 figures. v3: minor revisions, matches version to appear in JCA

    Local stochastic non-Gaussianity and N-body simulations

    Full text link
    Large-scale clustering of highly biased tracers of large-scale structure has emerged as one of the best observational probes of primordial non-Gaussianity of the local type (i.e. f_{NL}^{local}). This type of non-Gaussianity can be generated in multifield models of inflation such as the curvaton model. Recently, Tseliakhovich, Hirata, and Slosar showed that the clustering statistics depend qualitatively on the ratio of inflaton to curvaton power \xi after reheating, a free parameter of the model. If \xi is significantly different from zero, so that the inflaton makes a non-negligible contribution to the primordial adiabatic curvature, then the peak-background split ansatz predicts that the halo bias will be stochastic on large scales. In this paper, we test this prediction in N-body simulations. We find that large-scale stochasticity is generated, in qualitative agreement with the prediction, but that the level of stochasticity is overpredicted by ~30%. Other predictions, such as \xi independence of the halo bias, are confirmed by the simulations. Surprisingly, even in the Gaussian case we do not find that halo model predictions for stochasticity agree consistently with simulations, suggesting that semi-analytic modeling of stochasticity is generally more difficult than modeling halo bias.Comment: v3: minor changes matching published versio

    The Race Between Stars and Quasars in Reionizing Cosmic Hydrogen

    Full text link
    The cosmological background of ionizing radiation has been dominated by quasars once the Universe aged by ~2 billion years. At earlier times (redshifts z>3), the observed abundance of bright quasars declined sharply, implying that cosmic hydrogen was reionized by stars instead. Here, we explain the physical origin of the transition between the dominance of stars and quasars as a generic feature of structure formation in the concordance LCDM cosmology. At early times, the fraction of baryons in galaxies grows faster than the maximum (Eddington-limited) growth rate possible for quasars. As a result, quasars were not able to catch up with the rapid early growth of stellar mass in their host galaxies.Comment: 5 pages, 1 figure, Accepted for publication in JCA

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion

    Full text link
    We examine the cosmological constraining power of future large-scale weak lensing surveys on the model of \emph{Euclid}, with particular reference to primordial non-Gaussianity. Our analysis considers several different estimators of the projected matter power spectrum, based on both shear and flexion, for which we review the covariances and Fisher matrices. The bounds provided by cosmic shear alone for the local bispectrum shape, marginalized over σ8\sigma_8, are at the level of ΔfNL∼100\Delta f_\mathrm{NL} \sim 100. We consider three additional bispectrum shapes, for which the cosmic shear constraints range from ΔfNL∼340\Delta f_\mathrm{NL}\sim 340 (equilateral shape) up to ΔfNL∼500\Delta f_\mathrm{NL}\sim 500 (orthogonal shape). The competitiveness of cosmic flexion constraints against cosmic shear ones depends on the galaxy intrinsic flexion noise, that is still virtually unconstrained. Adopting the very high value that has been occasionally used in the literature results in the flexion contribution being basically negligible with respect to the shear one, and for realistic configurations the former does not improve significantly the constraining power of the latter. Since the flexion noise decreases with decreasing scale, by extending the analysis up to ℓmax=20,000\ell_\mathrm{max} = 20,000 cosmic flexion, while being still subdominant, improves the shear constraints by ∼10\sim 10% when added. However on such small scales the highly non-linear clustering of matter and the impact of baryonic physics make any error estimation uncertain. By considering lower, and possibly more realistic, values of the flexion intrinsic shape noise results in flexion constraining power being a factor of ∼2\sim 2 better than that of shear, and the bounds on σ8\sigma_8 and fNLf_\mathrm{NL} being improved by a factor of ∼3\sim 3 upon their combination. (abridged)Comment: 30 pages, 4 figures, 4 tables. To appear on JCA

    An Extended Zel'dovich Model for the Halo Mass Function

    Full text link
    A new way to construct a fitting formula for the halo mass function is presented. Our formula is expressed as a solution to the modified Jedamzik matrix equation that automatically satisfies the normalization constraint. The characteristic parameters expressed in terms of the linear shear eigenvalues are empirically determined by fitting the analytic formula to the numerical results from the high-resolution N-body simulation and found to be independent of scale, redshift and background cosmology. Our fitting formula with the best-fit parameters is shown to work excellently in the wide mass-range at various redshifts: The ratio of the analytic formula to the N-body results departs from unity by up to 10% and 5% over 10^{11}<= M/(M_sun/h)<= 5x10^{15} at z=0,\ 0.5 and 1 for the FoF-halo and SO-halo cases, respectively.Comment: Accepted for publication in JCAP; 19pages, 9 figures, significantly revised, discussion on the limitation of our model adde

    A critical analysis of high-redshift, massive galaxy clusters: I

    Get PDF
    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the >M,>z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee et al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the (>M,>z) existence probabilities of all clusters are fully consistent with LCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at >95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.Comment: 20 pages, 6 figures, 2 tables, modified to match accepted version (JCAP); title changed, main analysis unchanged, additional analysi

    Testing the applicability of morphometric characterisation in discordant catchments to ancient landscapes: A case study from southern Africa

    Get PDF
    The ancient landscapes south of the Great Escarpment in southern Africa preserve large-scale geomorphological features despite their antiquity. This study applies and evaluates morphometric indices (such as hypsometry, long profile analysis, stream gradient index, and linear/areal catchment characteristics) to the Gouritz catchment, a large discordant catchment in the Western Cape. Spatial variation of morphometric indices were assessed across catchment (trunk rivers) and subcatchment scales. The hypsometric curve of the catchment is sinusoidal, and a range of curve profiles are evident at subcatchment scale. Hypsometric integrals do not correlate to catchment properties such as area, circularity, relief, and dissection; and stream length gradients do not follow expected patterns, with the highest values seen in the mid-catchment areas. Rock type variation is interpreted to be the key control on morphometric indices within the Gouritz catchment, especially hypsometry and stream length gradient. External controls, such as tectonics and climate, were likely diminished because of the long duration of catchment development in this location. While morphometric indices can be a useful procedure in the evaluation of landscape evolution, this study shows that care must be taken in the application of morphometric indices to constrain tectonic or climatic variation in ancient landscapes because of inherited tectonic structures and signal shredding. More widely, we consider that ancient landscapes offer a valuable insight into long-term environmental change, but refinements to geomorphometric approaches are needed
    • …
    corecore