58 research outputs found

    The IRAM-30m line survey of the Horsehead PDR: II. First detection of the l-C3H+ hydrocarbon cation

    Get PDF
    We present the first detection of the l-C3H+ hydrocarbon in the interstellar medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two positions, namely the photo-dissociation region (PDR) and the nearby shielded core, revealed a consistent set of eight unidentified lines toward the PDR position. Six of them are detected with a signal-to-noise ratio from 6 to 19, while the two last ones are tentatively detected. Mostly noise appears at the same frequency toward the dense core, located less than 40" away. We simultaneously fit 1) the rotational and centrifugal distortion constants of a linear rotor, and 2) the Gaussian line shapes located at the eight predicted frequencies. The observed lines can be accurately fitted with a linear rotor model, implying a 1Sigma ground electronic state. The deduced rotational constant value is Be= 11244.9512 +/- 0.0015 MHz, close to that of l-C3H. We thus associate the lines to the l-C3H+ hydrocarbon cation, which enables us to constrain the chemistry of small hydrocarbons. A rotational diagram is then used to infer the excitation temperature and the column density. We finally compare the abundance to the results of the Meudon PDR photochemical model.Comment: 9 pages, 7 PostScript figures. Accepted for publication in Astronomy \& Astrophysics. Uses aa LaTeX macro

    A New Window of Exploration in the Mass Spectrum: Strong Lensing by Galaxy Groups in the SL2S

    Get PDF
    The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2" (produced by galaxy scale dark matter haloes) to >10" (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re around 1-2" and above 10" have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3"- 8", i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5" and 8". On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.Comment: A&A Accepted. Draft with Appendix images can be found at http://www.dark-cosmology.dk/~marceau/groups_sl2s.pd

    Evolution of Gaussian wave packets in capillary jets

    Get PDF
    A temporal analysis of the evolution of Gaussian wave packets in cylindrical capillary jets is presented through both a linear two-mode formulation and a one-dimensional nonlinear numerical scheme. These analyses are normally applicable to arbitrary initial conditions but our study focuses on pure-impulsive ones. Linear and nonlinear findings give consistent results in the stages for which the linear theory is valid. The inverse Fourier transforms representing the formal linear solution for the jet shape is both numerically evaluated and approximated by closed formulas. After a transient, these formulas predict an almost Gaussian-shape deformation with (i) a progressive drift of the carrier wave number to that given by the maximum of the Rayleigh dispersion relation, (ii) a progressive increase of its bell width, and (iii) a quasi-exponential growth of its amplitude. These parameters agree with those extracted from the fittings of Gaussian wave packets to the numerical simulations. Experimental results are also reported on near-Gaussian pulses perturbing the exit velocity of a 2 mm diameter water jet. The possibility of controlling the breakup location along the jet and other features, such as pinch-off simultaneity, are demonstrated

    HCN emission from translucent gas and UV-illuminated cloud edges revealed by wide-field IRAM 30m maps of Orion B GMC: Revisiting its role as tracer of the dense gas reservoir for star formation

    Get PDF
    We present 5 deg^2 (~250 pc^2) HCN, HNC, HCO+, and CO J=1-0 maps of the Orion B GMC, complemented with existing wide-field [CI] 492 GHz maps, as well as new pointed observations of rotationally excited HCN, HNC, H13CN, and HN13C lines. We detect anomalous HCN J=1-0 hyperfine structure line emission almost everywhere in the cloud. About 70% of the total HCN J=1-0 luminosity arises from gas at A_V < 8 mag. The HCN/CO J=1-0 line intensity ratio shows a bimodal behavior with an inflection point at A_V < 3 mag typical of translucent gas and UV-illuminated cloud edges. We find that most of the HCN J=1-0 emission arises from extended gas with n(H2) < 10^4 cm^-3, even lower density gas if the ionization fraction is > 10^-5 and electron excitation dominates. This result explains the low-A_V branch of the HCN/CO J=1-0 intensity ratio distribution. Indeed, the highest HCN/CO ratios (~0.1) at A_V < 3 mag correspond to regions of high [CI] 492 GHz/CO J=1-0 intensity ratios (>1) characteristic of low-density PDRs. Enhanced FUV radiation favors the formation and excitation of HCN on large scales, not only in dense star-forming clumps. The low surface brightness HCN and HCO+ J=1-0 emission scale with I_FIR (a proxy of the stellar FUV radiation field) in a similar way. Together with CO J=1-0, these lines respond to increasing I_FIR up to G0~20. On the other hand, the bright HCN J=1-0 emission from dense gas in star-forming clumps weakly responds to I_FIR once the FUV radiation field becomes too intense (G0>1500). The different power law scalings (produced by different chemistries, densities, and line excitation regimes) in a single but spatially resolved GMC resemble the variety of Kennicutt-Schmidt law indexes found in galaxy averages. As a corollary for extragalactic studies, we conclude that high HCN/CO J=1-0 line intensity ratios do not always imply the presence of dense gas.Comment: accepted for publication in A&A. 24 pages, 18 figures, plus Appendix. Abridged Abstract. English language not edite

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    SINTESIS MAGNETIT (Fe3O4) NANOPARTIKEL DENGAN NATRIUM DODESIL SULFAT

    Get PDF
    Telah dilakukan sintesis magnetit (Fe3O4) nanopartikel dengan Natrium Dodesil Sulfat (NaDS). Penelitian ini bertujuan untuk mengetahui pengaruh NaDS terhadap karakter kimia dan fisik magnetit nanopartikel hasil sintesis dengan metode kopresipitasi. Sintesis magnetit nanopartikel dilakukan dengan mereaksikan FeSO4.7H2O dan FeCl3.6H2O dengan perbandingan mol 1:2 serta natrium hidroksida (NaOH) sebagai presipitan dengan proses pengadukan pada suhu 60 °C selama 2 jam. Kajian pengaruh surfaktan pada sintesis magnetit nanopartikel dilakukan dengan variasi konsentrasi NaDS dari 1%, 3% dan 6% (b/v). Material hasil sintesis dikarakterisasi dengan spektrofotometer X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) dan Surface Area Analyzer (SAA). Hasil penelitian menunjukkan bahwa magnetit nanopartikel berhasil disintesis. Magnetit ditunjukkan oleh puncak difraksi utama pada 2θ 30,43o; 35,53o; 43,46o; 57,32o dan 62,84o. Ikatan Fe–O ditunjukkan dengan puncak serapan 565 cm-1 yang dianalisa lebih lanjut menggunakan EDX menunjukkan adanya unsur Fe dan O. Adanya surfaktan NaDS menaikkan ukuran partikel dan ukuran kristal magnetit dengan meningkatnya konsentrasi NaDS yang ditambahkan. Morfologi magnetit-NaDS semakin homogen berbentuk butiran-butiran kecil (grain) dengan ukuran partikel sekitar 30-100 nm. Ukuran kristal magnetit sebesar 11,07 nm (magnetit tanpa surfaktan); 13,62 nm (magnetit-NaDS 1%); 16,12 nm (magnetit-NaDS 3%) dan 11,17 nm (magnetit-NaDS 6%). Luas permukaan magnetit nanopartikel berturut-turut sebesar 89,67 m2/g (magnetit tanpa surfaktan); 102,50 m2/g (magnetit-NaDS 1%); 98,45 m2/g (magnetit-NaDS 3%) dan 82,92 m2/g (magnetit-NaDS 6%)

    The XXL Survey IV. Mass-temperature relation of the bright cluster sample

    Get PDF
    The XXL survey is the largest survey carried out by XMM-Newton. Covering an area of 50deg2^2, the survey contains 450\sim450 galaxy clusters out to a redshift \sim2 and to an X-ray flux limit of 5×1015ergs1cm2\sim5\times10^{-15}erg\,s^{-1}cm^{-2}. This paper is part of the first release of XXL results focussed on the bright cluster sample. We investigate the scaling relation between weak-lensing mass and X-ray temperature for the brightest clusters in XXL. The scaling relation is used to estimate the mass of all 100 clusters in XXL-100-GC. Based on a subsample of 38 objects that lie within the intersection of the northern XXL field and the publicly available CFHTLenS catalog, we derive the MWLM_{WL} of each system with careful considerations of the systematics. The clusters lie at 0.1<z<0.60.1<z<0.6 and span a range of T15keV T\simeq1-5keV. We combine our sample with 58 clusters from the literature, increasing the range out to 10keV. To date, this is the largest sample of clusters with MWLM_{WL} measurements that has been used to study the mass-temperature relation. The fit (MTbM\propto T^b) to the XXL clusters returns a slope b=1.780.32+0.37b=1.78^{+0.37}_{-0.32} and intrinsic scatter σlnMT0.53\sigma_{\ln M|T}\simeq0.53; the scatter is dominated by disturbed clusters. The fit to the combined sample of 96 clusters is in tension with self-similarity, b=1.67±0.12b=1.67\pm0.12 and σlnMT0.41\sigma_{\ln M|T}\simeq0.41. Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systems of 1keV\sim1keV temperature and highlight that the current data and samples are a limit to our statistical precision. As such we are unable to determine whether the validity of hydrostatic equilibrium is a function of halo mass. An enlarged sample of cool systems, deeper weak-lensing data, and robust modelling of the selection function will help to explore these issues further

    Gas kinematics around filamentary structures in the Orion B cloud

    Get PDF
    Context. Understanding the initial properties of star-forming material and how they affect the star formation process is key. From an observational point of view, the feedback from young high-mass stars on future star formation properties is still poorly constrained. Aims. In the framework of the IRAM 30m ORION-B large program, we obtained observations of the translucent (2 ≤ AV &lt; 6 mag) and moderately dense gas (6 ≤ AV &lt; 15 mag), which we used to analyze the kinematics over a field of 5 deg2 around the filamentary structures. Methods. We used the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) algorithm to decompose and de-noise the C 18 O(1−0) and 13CO(1−0) signals by taking the spatial coherence of the emission into account. We produced gas column density and mean velocity maps to estimate the relative orientation of their spatial gradients. Results. We identified three cloud velocity layers at different systemic velocities and extracted the filaments in each velocity layer. The filaments are preferentially located in regions of low centroid velocity gradients. By comparing the relative orientation between the column density and velocity gradients of each layer from the ORION-B observations and synthetic observations from 3D kinematic toy models, we distinguish two types of behavior in the dynamics around filaments: (i) radial flows perpendicular to the filament axis that can be either inflows (increasing the filament mass) or outflows and (ii) longitudinal flows along the filament axis. The former case is seen in the Orion B data, while the latter is not identified. We have also identified asymmetrical flow patterns, usually associated with filaments located at the edge of an H II region. Conclusions. This is the first observational study to highlight feedback from H II regions on filament formation and, thus, on star formation in the Orion B cloud. This simple statistical method can be used for any molecular cloud to obtain coherent information on the kinematics

    Haslea silbo, a novel cosmopolitan species of blue diatoms

    Get PDF
    Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV–visible spectrophotometry and Raman spectrome-try. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved
    corecore