6,991 research outputs found

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Classification and stability of simple homoclinic cycles in R^5

    Full text link
    The paper presents a complete study of simple homoclinic cycles in R^5. We find all symmetry groups Gamma such that a Gamma-equivariant dynamical system in R^5 can possess a simple homoclinic cycle. We introduce a classification of simple homoclinic cycles in R^n based on the action of the system symmetry group. For systems in R^5, we list all classes of simple homoclinic cycles. For each class, we derive necessary and sufficient conditions for asymptotic stability and fragmentary asymptotic stability in terms of eigenvalues of linearisation near the steady state involved in the cycle. For any action of the groups Gamma which can give rise to a simple homoclinic cycle, we list classes to which the respective homoclinic cycles belong, thus determining conditions for asymptotic stability of these cycles.Comment: 34 pp., 4 tables, 30 references. Submitted to Nonlinearit

    Cosmic Ray Acceleration at Relativistic Shock Waves with a "Realistic" Magnetic Field Structure

    Full text link
    The process of cosmic ray first-order Fermi acceleration at relativistic shock waves is studied with the method of Monte Carlo simulations. The simulations are based on numerical integration of particle equations of motion in a turbulent magnetic field near the shock. In comparison to earlier studies, a few "realistic" features of the magnetic field structure are included. The upstream field consists of a mean field component inclined at some angle to the shock normal with finite-amplitude sinusoidal perturbations imposed upon it. The perturbations are assumed to be static in the local plasma rest frame. Their flat or Kolmogorov spectra are constructed with randomly drawn wave vectors from a wide range (kmin,kmax)(k_{min}, k_{max}). The downstream field structure is derived from the upstream one as compressed at the shock. We present particle spectra and angular distributions obtained at mildly relativistic sub- and superluminal shocks and also parallel shocks. We show that particle spectra diverge from a simple power-law, the exact shape of the spectrum depends on both the amplitude of the magnetic field perturbations and the wave power spectrum. Features such as spectrum hardening before the cut-off at oblique subluminal shocks and formation of power-law tails at superluminal ones are presented and discussed. At parallel shocks, the presence of finite-amplitude magnetic field perturbations leads to the formation of locally oblique field configurations at the shock and the respective magnetic field compressions. This results in the modification of the particle acceleration process, introducing some features present in oblique shocks, e.g., particle reflections from the shock. We demonstrate for parallel shocks a (nonmonotonic) variation of the particle spectral index with the turbulence amplitude.Comment: revised version (37 pages, 13 figures

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Shock Acceleration of Cosmic Rays - a critical review

    Get PDF
    Motivated by recent unsuccessful efforts to detect the predicted flux of TeV gamma-rays from supernova remnants, we present a critical examination of the theory on which these predictions are based. Three crucial problems are identified: injection, maximum achievable particle energy and spectral index. In each case significant new advances in understanding have been achieved, which cast doubt on prevailing paradigms such as Bohm diffusion and single-fluid MHD. This indicates that more realistic analytical models, backed by more sophisticated numerical techniques should be employed to obtain reliable predictions. Preliminary work on incorporating the effects of anomalous transport suggest that the resulting spectrum should be significantly softer than that predicted by conventional theory.Comment: 8 pages, invited review presented at the 17th ECRS, Lodz, July 2000; to appear in Journal of Physics G: Nuclear and Particle Physic

    Application of the Beer–Lambert Model to Attenuation of Photosynthetically Active Radiation in a Shallow, Eutrophic Lake

    Full text link
    Models of primary production in aquatic systems must include a means to estimate subsurface light. Such models often use the Beer–Lambert law, assuming exponential attenuation of light with depth. It is further assumed that the diffuse attenuation coefficient may be estimated as a summation of scattering/absorbing constituent concentrations multiplied by their respective specific attenuation coefficients. While theoretical deviations from these assumptions have been documented, it is useful to consider the empirical performance of this common approach. Photosynthetically active radiation (PAR) levels and water quality conditions were recorded weekly from six to eight monitoring stations in western Lake Erie between 2012 and 2016. Exponential PAR extinction models yielded a mean attenuation coefficient of 1.55 m (interquartile range = 0.74–1.90 m). While more complex light attenuation models are available, analysis of residuals indicated that the simple Beer–Lambert model is adequate for shallow, eutrophic waters similar to western Lake Erie (R2 > 0.9 for 96% of samples). Three groups of water quality variables were predictive of PAR attenuation: total and nonvolatile suspended particles, dissolved organic substances (dissolved organic carbon and chromophoric dissolved organic matter), and organic solids (volatile suspended solids and chlorophyll). Multiple regression models using these variables predicted 3–90% of the variability in PAR attenuation, with a median adjusted R2 = 0.86. Explanatory variables within these groups may substitute for each other while maintaining similar model performance, indicating that various combinations of water quality variables may be useful to predict PAR attenuation, depending on availability within a model framework or monitoring program.Key PointsThe Beer–Lambert law effectively models photosynthetically active radiation in western Lake Erie, despite some systematic deviationsField‐obtained water quality parameters can predict photosynthetically active radiation attenuation with a high degree of confidenceSuspended particle concentration is most predictive of photosynthetically active radiation attenuation in this turbid, eutrophic basinPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147097/1/wrcr23654_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147097/2/wrcr23654-sup-0001-2018WR023024-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147097/3/wrcr23654.pd

    Pressure Induced Topological Phase Transitions in Membranes

    Full text link
    Some highly unusual features of a lipid-water liquid crystal are revealed by high pressure x-ray diffraction, light scattering and dilatometric studies of the lamellar (bilayer LαL_{\alpha}) to nonlamellar inverse hexagonal (HIIH_{II}) phase transition. (i) The size of the unit cell of the HIIH_{II} phase increases with increasing pressure. (ii) The transition volume, ΔVbh\Delta V_{bh}, decreases and appears to vanish as the pressure is increased. (iii) The intensity of scattered light increases as ΔVbh\Delta V_{bh} decreases. Data are presented which suggest that this increase is due to the formation of an intermediate cubic phase, as predicted by recent theoretical suggestions of the underlying universal phase sequence.Comment: 12 pages, typed using REVTEX 2.

    The Pioneer anomaly in the context of the braneworld scenario

    Full text link
    We examine the Pioneer anomaly - a reported anomalous acceleration affecting the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a braneworld scenario. We show that effects due to the radion field cannot account for the anomaly, but that a scalar field with an appropriate potential is able to explain the phenomena. Implications and features of our solution are analyzed.Comment: Final version to appear at Classical & Quantum Gravity. Plainlatex 19 page

    Young starless cores embedded in the magnetically dominated Pipe Nebula

    Get PDF
    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be threaded by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show average radii of ~0.09 pc, densities of ~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage, and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission, with CS detections toward all the sample. Two of them, Cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.Comment: Accepted for publication in ApJ. 15 pages, 5 figures, 9 table

    CD4 cell count and the risk of AIDS or death in HIV-Infected adults on combination antiretroviral therapy with a suppressed viral load: a longitudinal cohort study from COHERE.

    Get PDF
    BACKGROUND: Most adults infected with HIV achieve viral suppression within a year of starting combination antiretroviral therapy (cART). It is important to understand the risk of AIDS events or death for patients with a suppressed viral load. METHODS AND FINDINGS: Using data from the Collaboration of Observational HIV Epidemiological Research Europe (2010 merger), we assessed the risk of a new AIDS-defining event or death in successfully treated patients. We accumulated episodes of viral suppression for each patient while on cART, each episode beginning with the second of two consecutive plasma viral load measurements 500 copies/µl, the first of two consecutive measurements between 50-500 copies/µl, cART interruption or administrative censoring. We used stratified multivariate Cox models to estimate the association between time updated CD4 cell count and a new AIDS event or death or death alone. 75,336 patients contributed 104,265 suppression episodes and were suppressed while on cART for a median 2.7 years. The mortality rate was 4.8 per 1,000 years of viral suppression. A higher CD4 cell count was always associated with a reduced risk of a new AIDS event or death; with a hazard ratio per 100 cells/µl (95% CI) of: 0.35 (0.30-0.40) for counts <200 cells/µl, 0.81 (0.71-0.92) for counts 200 to <350 cells/µl, 0.74 (0.66-0.83) for counts 350 to <500 cells/µl, and 0.96 (0.92-0.99) for counts ≥500 cells/µl. A higher CD4 cell count became even more beneficial over time for patients with CD4 cell counts <200 cells/µl. CONCLUSIONS: Despite the low mortality rate, the risk of a new AIDS event or death follows a CD4 cell count gradient in patients with viral suppression. A higher CD4 cell count was associated with the greatest benefit for patients with a CD4 cell count <200 cells/µl but still some slight benefit for those with a CD4 cell count ≥500 cells/µl
    corecore