Spectroscopic observations of the 2006 outburst of the recurrent nova RS
Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast
wave has decelerated at a higher rate than predicted by the standard
test-particle adiabatic shock-wave model. Here we show that the observed
evolution of the nova remnant can be explained by the diffusive shock
acceleration of particles at the blast wave and the subsequent escape of the
highest energy ions from the shock region. Nonlinear particle acceleration can
also account for the difference of shock velocities deduced from the IR and
X-ray data. The maximum energy that accelerated electrons and protons can have
achieved in few days after outburst is found to be as high as a few TeV. Using
the semi-analytic model of nonlinear diffusive shock acceleration developed by
Berezhko & Ellison, we show that the postshock temperature of the shocked gas
measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration
efficiency.Comment: Accepted for publication in ApJ