25 research outputs found

    Etablissement de la texture au cours du soudage TIG d’alliages austénitiques : soudures réelles et numériques

    Get PDF
    The structure prediction of metallic alloys during a welding or additive manufacturing process is the key point for the joining’s properties. In addition to the welding parameters (or additive manufacturing), the base metal microstructure, chemical homogeneity and crystallographic structure are numerous factors playing an important role on the final microstructure and texture development. Few studies are available in this way. This work purposes a focus on the microstructure establishment during the welded zone solidification during Gas Tungsten Arc Welding. The materials investigated are nickel – chromium – iron austenitic alloys. The grain selection is tracked in a real weld and a texturation criteria is proposed. The following data’s are compared to the properties of the numerical weld experience. The conclusion suggests that is necessary to improve the knowledges in the grain selection mechanism in order to produce numerical welding microstructure in good accordance with real microstructure welding.La prédiction de la structure des alliages métalliques durant une étape de soudage ou de fabrication additive est un point clef du développement de ces procédés et des propriétés des assemblages. En plus des paramètres de soudage (ou de fabrication additive), la microstructure du métal de base, son homogénéité chimique et sa nature cristallographique sont autant de facteur jouant un rôle sur l’établissement final des microstructures et des textures pour lesquels peu d’études détaillées sont disponibles. Une description précise de l’établissement des microstructures de solidification lors du soudage TIG d’alliage austénitique nickel-chrome-fer est réalisée dans ce travail. La sélection des grains dans la soudure est suivie dans une soudure réelle. Un critère de texturation est proposé et les données sont comparées aux textures simulées d’où il ressort l’importance d’augmenter la connaissance des mécanismes de sélection de grains pour espérer modéliser encore plus fidèlement les propriétés microstructurales et de texture générées par le soudage

    Synergistic activity between primary visual neurons

    Get PDF
    Abstract : Cortical microcircuitry plays a pivotal role in encoding sensory information reaching the cortex. However, the fundamental knowledge concerning the mechanisms that govern feature-encoding by these sub-networks is still sparse. Here, we show through multi electrode recordings in V1 of conventionally prepared anesthetized cats, that an avalanche of synergistic neural activity occurs between functionally connected neurons in a cell assembly in response to the presented stimulus. The results specifically show that once the reference neuron spikes in a connected neuron-pair, it facilitates the response of its companion (target) neuron for 50 ms and, thereafter, the excitability of the target neuron declines. On the other hand, the functionally unconnected neurons do not facilitate each other’s activity within the 50 ms time-window. The added excitation (facilitation) of connected neurons is almost four times the responsiveness of unconnected neurons. This suggests that connectedness confers the added excitability to neurons; consequently leading to feature-encoding within the emergent 50 ms-period. Furthermore, the facilitation significantly decreases as a function of orientation selectivity spread

    Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity

    Get PDF
    Abstract : Background: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. Results: Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a “homeodynamic” manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. Conclusions: Our results support the “homeostatic plasticity concept” giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons

    Modulation of functional connectivity following visual adaptation: homeostasis in V1

    Get PDF
    Abstract: Sensory neurons exhibit remarkable adaptability in acquiring new optimal selectivity to unfamiliar features when a new stimulus becomes prevalent in the environment. In conventionally prepared adult anesthetized cats, we used visual adaptation to change the preferred orientation selectivity in V1 neurons. Cortical circuits are dominated by complex and intricate connections between neurons. Cross-correlation of cellular spike-trains discloses the putative functional connection between two neurons. We sought to investigate changes in these links following a twelve minute uninterrupted application of a specific, usually non-preferred, orientation. We report that visual adaptation, mimicking training, modulates the magnitude of cross-correlograms suggesting that the strength of inter-neuronal relationships is modified. While individual cell-pairs exhibit changes in their response correlation strength, the average correlation of the recorded cell cluster remains unchanged. Hence, visual adaptation induces plastic changes that impact the connectivity between neurons

    Impasses conflictuelles

    No full text
    National audienc

    Agressions et hold-up

    No full text
    International audienc

    Exploration of Rank Order Coding with Spiking Neural Networks for Speech Recognition

    No full text
    Speech recognition is very difficult in the context of noisy and corrupted speech. Most conventional techniques need huge databases to estimate speech (or noise) density probabilities to perform recognition. We discuss the potential of perceptive speech analysis and processing in combination with biologically plausible neural network processors.We illustrate the potential of such non-linear processing of speech by means of a preliminary test with recognition of French spoken digits from a small speech database

    Influence of Ir Additions and Icosahedral Short Range Order (ISRO) on Nucleation and Growth Kinetics in Au-20.5Wt Pct Cu-4.5Wt PctAg Alloy

    No full text
    International audienceBased on detailed EBSD analyses, Kurtuldu et al [1] have explained the grain refinement of Au-12.5 wt.%Cu-12.5 wt.%Ag (yellow gold) by the addition of minute amounts of Ir in terms of "icosahedral quasicrystal (iQC)-mediated nucleation", i.e., Ir induced the formation of Icosahedral Short Range Order (ISRO) of atoms in the liquid, leading to the formation of iQC on which the fcc-phase forms. In the present contribution , we show that: (i) this mechanism is also responsible of the grain refinement in Au-20.5 wt.%Cu-4.5 wt.%Ag (pink gold) with Ir addition; (ii) ISRO also influences the morphology and growth kinetics of the fcc phase: at solidification rate of a few mm/s, 100 dendrites are replaced by a cellular-type morphology growing along 111 when 100 wt.ppm of Ir is added to the melt; (iii) iQC-mediated nucleation is accompanied by a spinodal decomposition of the liquid, which is revealed at high cooling rate by the formation of Cu-rich particles or dendrites, some of them being also twinned, in parallel to iQC-mediated grain refinement and twin formation
    corecore